Skip to main content

Ceramide Synthases: Reexamining Longevity

  • Chapter
  • First Online:
Sphingolipids: Basic Science and Drug Development

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 215))

Abstract

The ceramide synthase (CerS) enzymes catalyze the formation of (dihydro) ceramide, and thereby provide critical complexity to all sphingolipids (SLs) with respect to their acyl chain length. This review summarizes the progress in the field of CerS from the time of their discovery more than a decade ago as Longevity assurance (Lass) genes in yeast, until the recent development of CerS-deficient mouse models. Human hereditary CerS disorders are yet to be discovered. However, the recent findings in CerS mutant animals highlight the important physiological role of these enzymes. The fundamental findings with respect to CerS structure, function, localization, and regulation are discussed, as well as CerS roles in maintaining longevity in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    CerS3 is unique in this respect, as it was found to be important for the last stages of proper skin development, and thus, these mice do not survive after birth (see above).

References

  • Bauer R, Voelzmann A, Breiden B, Schepers U, Farwanah H, Hahn I, Eckardt F, Sandhoff K, Hoch M (2009) Schlank, a member of the ceramide synthase family controls growth and body fat in Drosophila. EMBO J 28(23):3706–3716

    Article  PubMed  CAS  Google Scholar 

  • Becker I, Wang-Eckhardt L, Yaghootfam A, Gieselmann V, Eckhardt M (2008) Differential expression of (dihydro)ceramide synthases in mouse brain: oligodendrocyte-specific expression of CerS2/Lass2. Histochem Cell Biol 129(2):233–241

    Article  PubMed  CAS  Google Scholar 

  • Ben-David O, Pewzner-Jung Y, Brenner O, Laviad EL, Kogot-Levin A, Weissberg I, Biton IE, Pienik R, Wang E, Kelly S, Alroy J, Raas-Rothschild A, Friedman A, Brugger B, Merrill AH Jr, Futerman AH (2011) Encephalopathy caused by ablation of very long acyl chain ceramide synthesis may be largely due to reduced galactosylceramide levels. J Biol Chem 286(34):30022–30033

    Article  PubMed  CAS  Google Scholar 

  • Bidle KD, Vardi A (2011) A chemical arms race at sea mediates algal host-virus interactions. Curr Opin Microbiol 14(4):449–457

    Article  PubMed  Google Scholar 

  • Bionda C, Portoukalian J, Schmitt D, Rodriguez-Lafrasse C, Ardail D (2004) Subcellular compartmentalization of ceramide metabolism: MAM (mitochondria-associated membrane) and/or mitochondria? Biochem J 382(Pt 2):527–533

    PubMed  CAS  Google Scholar 

  • Bonzon-Kulichenko E, Schwudke D, Gallardo N, Molto E, Fernandez-Agullo T, Shevchenko A, Andres A (2009) Central leptin regulates total ceramide content and sterol regulatory element binding protein-1C proteolytic maturation in rat white adipose tissue. Endocrinology 150(1):169–178

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Liu Y, Allegood J, Wang E, Cachon-Gonzalez B, Cox TM, Merrill AH Jr, Sullards MC (2010) Imaging MALDI mass spectrometry of sphingolipids using an oscillating capillary nebulizer matrix application system. Methods Mol Biol 656:131–146

    Article  PubMed  CAS  Google Scholar 

  • Coetzee T, Fujita N, Dupree J, Shi R, Blight A, Suzuki K, Popko B (1996) Myelination in the absence of galactocerebroside and sulfatide: normal structure with abnormal function and regional instability. Cell 86(2):209–219

    Article  PubMed  CAS  Google Scholar 

  • Contreras FX, Ernst AM, Haberkant P, Bjorkholm P, Lindahl E, Gonen B, Tischer C, Elofsson A, von Heijne G, Thiele C, Pepperkok R, Wieland F, Brugger B (2012) Molecular recognition of a single sphingolipid species by a protein's transmembrane domain. Nature 481(7382):525–529

    Article  PubMed  CAS  Google Scholar 

  • D'Mello NP, Childress AM, Franklin DS, Kale SP, Pinswasdi C, Jazwinski SM (1994) Cloning and characterization of LAG1, a longevity-assurance gene in yeast. J Biol Chem 269(22):15451–15459

    PubMed  Google Scholar 

  • Deng X, Yin X, Allan R, Lu DD, Maurer CW, Haimovitz-Friedman A, Fuks Z, Shaham S, Kolesnick R (2008) Ceramide biogenesis is required for radiation-induced apoptosis in the germ line of C. elegans. Science 322(5898):110–115

    Article  PubMed  CAS  Google Scholar 

  • Fei P, Junyu N, Jiangfeng Y, Jingpin Y, Yuping W, Zhihui H, Jieliang W, Xianglin C, Shaomin Y, Jie Z (2004) Monoclonal antibodies against human tumor metastasis suppressor gene-1 (TMSG-1): preparation, characterization, and application. Hybrid Hybridomics 23(5):318–325

    Article  PubMed  Google Scholar 

  • Futerman AH, Hannun YA (2004) The complex life of simple sphingolipids. EMBO Rep 5(8):777–782

    Article  PubMed  CAS  Google Scholar 

  • Gong MZ, You JF, Pei F, Cui XL, Li G, Zheng J (2011) Transcriptional activation of TMSG-1 by complex of KLF6 and Sp1. Zhonghua Bing Li Xue Za Zhi 40(8):542–548

    PubMed  CAS  Google Scholar 

  • Guillas I, Jiang JC, Vionnet C, Roubaty C, Uldry D, Chuard R, Wang J, Jazwinski SM, Conzelmann A (2003) Human homologues of LAG1 reconstitute Acyl-CoA-dependent ceramide synthesis in yeast. J Biol Chem 278(39):37083–37091

    Article  PubMed  CAS  Google Scholar 

  • Guillas I, Kirchman PA, Chuard R, Pfefferli M, Jiang JC, Jazwinski SM, Conzelmann A (2001) C26-CoA-dependent ceramide synthesis of Saccharomyces cerevisiae is operated by Lag1p and Lac1p. EMBO J 20(11):2655–2665

    Article  PubMed  CAS  Google Scholar 

  • Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9(2):139–150

    Article  PubMed  CAS  Google Scholar 

  • Hannun YA, Obeid LM (2011) Many ceramides. J Biol Chem 286(32):27855–27862

    Article  PubMed  CAS  Google Scholar 

  • Heung LJ, Luberto C, Del Poeta M (2006) Role of sphingolipids in microbial pathogenesis. Infect Immun 74(1):28–39

    Article  PubMed  CAS  Google Scholar 

  • Hirschberg K, Rodger J, Futerman AH (1993) The long-chain sphingoid base of sphingolipids is acylated at the cytosolic surface of the endoplasmic reticulum in rat liver. Biochem J 290(Pt 3):751–757

    PubMed  CAS  Google Scholar 

  • Hojjati MR, Li Z, Jiang XC (2005) Serine palmitoyl-CoA transferase (SPT) deficiency and sphingolipid levels in mice. Biochim Biophys Acta 1737(1):44–51

    Article  PubMed  CAS  Google Scholar 

  • Imgrund S, Hartmann D, Farwanah H, Eckhardt M, Sandhoff R, Degen J, Gieselmann V, Sandhoff K, Willecke K (2009) Adult ceramide synthase 2 (CERS2)-deficient mice exhibit myelin sheath defects, cerebellar degeneration, and hepatocarcinomas. J Biol Chem 284(48):33549–33560

    Article  PubMed  CAS  Google Scholar 

  • Iwabuchi K, Prinetti A, Sonnino S, Mauri L, Kobayashi T, Ishii K, Kaga N, Murayama K, Kurihara H, Nakayama H, Yoshizaki F, Takamori K, Ogawa H, Nagaoka I (2008) Involvement of very long fatty acid-containing lactosylceramide in lactosylceramide-mediated superoxide generation and migration in neutrophils. Glycoconj J 25(4):357–374

    Article  PubMed  CAS  Google Scholar 

  • Jennemann R, Rabionet M, Gorgas K, Epstein S, Dalpke A, Rothermel U, Bayerle A, van der Hoeven F, Imgrund S, Kirsch J, Nickel W, Willecke K, Riezman H, Grone HJ, Sandhoff R (2011) Loss of ceramide synthase 3 causes lethal skin barrier disruption. Hum Mol Genet 21(3):586–608

    Article  PubMed  Google Scholar 

  • Jiang JC, Kirchman PA, Zagulski M, Hunt J, Jazwinski SM (1998) Homologs of the yeast longevity gene LAG1 in Caenorhabditis elegans and human. Genome Res 8(12):1259–1272

    PubMed  CAS  Google Scholar 

  • Jung T, Bader N, Grune T (2007) Lipofuscin: formation, distribution, and metabolic consequences. Ann N Y Acad Sci 1119:97–111

    Article  PubMed  CAS  Google Scholar 

  • Jungermann K, Katz N (1989) Functional specialization of different hepatocyte populations. Physiol Rev 69(3):708–764

    PubMed  CAS  Google Scholar 

  • Kageyama-Yahara N, Riezman H (2006) Transmembrane topology of ceramide synthase in yeast. Biochem J 398(3):585–593

    Article  PubMed  CAS  Google Scholar 

  • Kitatani K, Idkowiak-Baldys J, Hannun YA (2008) The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal 20(6):1010–1018

    Article  PubMed  CAS  Google Scholar 

  • Koyanagi S, Kuga M, Soeda S, Hosoda Y, Yokomatsu T, Takechi H, Akiyama T, Shibuya S, Shimeno H (2003) Elevation of de novo ceramide synthesis in tumor masses and the role of microsomal dihydroceramide synthase. Int J Cancer 105(1):1–6

    Article  PubMed  CAS  Google Scholar 

  • Lahiri S, Futerman AH (2005) LASS5 is a bona fide dihydroceramide synthase that selectively utilizes palmitoyl-CoA as acyl donor. J Biol Chem 280(40):33735–33738

    Article  PubMed  CAS  Google Scholar 

  • Lahiri S, Lee H, Mesicek J, Fuks Z, Haimovitz-Friedman A, Kolesnick RN, Futerman AH (2007) Kinetic characterization of mammalian ceramide synthases: determination of K(m) values towards sphinganine. FEBS Lett 581(27):5289–5294

    Article  PubMed  CAS  Google Scholar 

  • Lahiri S, Park H, Laviad EL, Lu X, Bittman R, Futerman AH (2009) Ceramide synthesis is modulated by the sphingosine analog FTY720 via a mixture of uncompetitive and noncompetitive inhibition in an Acyl-CoA chain length-dependent manner. J Biol Chem 284(24):16090–16098

    Article  PubMed  CAS  Google Scholar 

  • Laviad EL, Albee L, Pankova-Kholmyansky I, Epstein S, Park H, Merrill AH Jr, Futerman AH (2008) Characterization of ceramide synthase 2: tissue distribution, substrate specificity, and inhibition by sphingosine 1-phosphate. J Biol Chem 283(9):5677–5684

    Article  PubMed  CAS  Google Scholar 

  • Laviad EL, Kelly S, Merrill AH Jr, Futerman AH (2012) Modulation of ceramide synthase activity via dimerization. J Biol Chem 287:21025–21033

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Rotolo JA, Mesicek J, Penate-Medina T, Rimner A, Liao WC, Yin X, Ragupathi G, Ehleiter D, Gulbins E, Zhai D, Reed JC, Haimovitz-Friedman A, Fuks Z, Kolesnick R (2011) Mitochondrial ceramide-rich macrodomains functionalize Bax upon irradiation. PLoS One 6(6):e19783

    Article  PubMed  CAS  Google Scholar 

  • Levy M, Futerman AH (2010) Mammalian ceramide synthases. IUBMB Life 62(5):347–356

    PubMed  CAS  Google Scholar 

  • Ma C, Ning J, You J, Liu L, Wang J, Cui X, Wu B, Zheng J (2003) Primary functional identification of gene TMSG-1. Sci China C Life Sci 46(6):641–650

    Article  PubMed  CAS  Google Scholar 

  • Menuz V, Howell KS, Gentina S, Epstein S, Riezman I, Fornallaz-Mulhauser M, Hengartner MO, Gomez M, Riezman H, Martinou JC (2009) Protection of C. elegans from anoxia by HYL-2 ceramide synthase. Science 324(5925):381–384

    Article  PubMed  CAS  Google Scholar 

  • Mesicek J, Lee H, Feldman T, Jiang X, Skobeleva A, Berdyshev EV, Haimovitz-Friedman A, Fuks Z, Kolesnick R (2010) Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells. Cell Signal 22(9):1300–1307

    Article  PubMed  CAS  Google Scholar 

  • Mesika A, Ben-Dor S, Laviad EL, Futerman AH (2007) A new functional motif in Hox domain-containing ceramide synthases: identification of a novel region flanking the Hox and TLC domains essential for activity. J Biol Chem 282(37):27366–27373

    Article  PubMed  CAS  Google Scholar 

  • Meyers-Needham M, Ponnusamy S, Gencer S, Jiang W, Thomas RJ, Senkal CE, Ogretmen B (2011) Concerted functions of HDAC1 and microRNA-574-5p repress alternatively spliced ceramide synthase 1 expression in human cancer cells. EMBO Mol Med 4(2):78–92

    Article  PubMed  Google Scholar 

  • Mizutani Y, Kihara A, Igarashi Y (2005) Mammalian Lass6 and its related family members regulate synthesis of specific ceramides. Biochem J 390(Pt 1):263–271

    PubMed  CAS  Google Scholar 

  • Mizutani Y, Kihara A, Igarashi Y (2006) LASS3 (longevity assurance homologue 3) is a mainly testis-specific (dihydro)ceramide synthase with relatively broad substrate specificity. Biochem J 398(3):531–538

    Article  PubMed  CAS  Google Scholar 

  • Mullen TD, Jenkins RW, Clarke CJ, Bielawski J, Hannun YA, Obeid LM (2011) Ceramide synthase-dependent ceramide generation and programmed cell death: involvement of salvage pathway in regulating postmitochondrial events. J Biol Chem 286(18):15929–15942

    Article  PubMed  CAS  Google Scholar 

  • Obeid LM, Okamoto Y, Mao C (2002) Yeast sphingolipids: metabolism and biology. Biochim Biophys Acta 1585(2–3):163–171

    PubMed  CAS  Google Scholar 

  • Osawa Y, Uchinami H, Bielawski J, Schwabe RF, Hannun YA, Brenner DA (2005) Roles for C16-ceramide and sphingosine 1-phosphate in regulating hepatocyte apoptosis in response to tumor necrosis factor-alpha. J Biol Chem 280(30):27879–27887

    Article  PubMed  CAS  Google Scholar 

  • Pagarete A, Allen MJ, Wilson WH, Kimmance SA, de Vargas C (2009) Host-virus shift of the sphingolipid pathway along an Emiliania huxleyi bloom: survival of the fattest. Environ Microbiol 11(11):2840–2848

    Article  PubMed  CAS  Google Scholar 

  • Park H, Haynes CA, Nairn AV, Kulik M, Dalton S, Moremen K, Merrill AH Jr (2010) Transcript profiling and lipidomic analysis of ceramide subspecies in mouse embryonic stem cells and embryoid bodies. J Lipid Res 51(3):480–489

    Article  PubMed  CAS  Google Scholar 

  • Park JW, Park WJ, Kuperman Y, Boura-Halfon S, Pewzner-Jung Y, Futerman AH (2012) Ablation of very long acyl chain sphingolipids causes hepatic insulin resistance in mice due to altered getergent-resistant membranes. Hepatology. Aug 22. doi:10.1002/hep.26015

    Google Scholar 

  • Pewzner-Jung Y, Ben-Dor S, Futerman AH (2006) When do Lasses (longevity assurance genes) become CerS (ceramide synthases)?: Insights into the regulation of ceramide synthesis. J Biol Chem 281(35):25001–25005

    Article  PubMed  CAS  Google Scholar 

  • Pewzner-Jung Y, Brenner O, Braun S, Laviad EL, Ben-Dor S, Feldmesser E, Horn-Saban S, Amann-Zalcenstein D, Raanan C, Berkutzki T, Erez-Roman R, Ben-David O, Levy M, Holzman D, Park H, Nyska A, Merrill AH Jr, Futerman AH (2010a) A critical role for ceramide synthase 2 in liver homeostasis: II. Insights into molecular changes leading to hepatopathy. J Biol Chem 285(14):10911–10923

    Article  PubMed  CAS  Google Scholar 

  • Pewzner-Jung Y, Park H, Laviad EL, Silva LC, Lahiri S, Stiban J, Erez-Roman R, Brugger B, Sachsenheimer T, Wieland F, Prieto M, Merrill AH Jr, Futerman AH (2010b) A critical role for ceramide synthase 2 in liver homeostasis: I. Alterations in lipid metabolic pathways. J Biol Chem 285(14):10902–10910

    Article  PubMed  CAS  Google Scholar 

  • Rabionet M, van der Spoel AC, Chuang CC, von Tumpling-Radosta B, Litjens M, Bouwmeester D, Hellbusch CC, Korner C, Wiegandt H, Gorgas K, Platt FM, Grone HJ, Sandhoff R (2008) Male germ cells require polyenoic sphingolipids with complex glycosylation for completion of meiosis: a link to ceramide synthase-3. J Biol Chem 283(19):13357–13369

    Article  PubMed  CAS  Google Scholar 

  • Riebeling C, Allegood JC, Wang E, Merrill AH Jr, Futerman AH (2003) Two mammalian longevity assurance gene (LAG1) family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors. J Biol Chem 278(44):43452–43459

    Article  PubMed  CAS  Google Scholar 

  • Sandhoff R (2010) Very long chain sphingolipids: tissue expression, function and synthesis. FEBS Lett 584(9):1907–1913

    Article  PubMed  CAS  Google Scholar 

  • Schorling S, Vallee B, Barz WP, Riezman H, Oesterhelt D (2001) Lag1p and Lac1p are essential for the Acyl-CoA-dependent ceramide synthase reaction in Saccharomyces cerevisae. Mol Biol Cell 12(11):3417–3427

    PubMed  CAS  Google Scholar 

  • Shimeno H, Soeda S, Sakamoto M, Kouchi T, Kowakame T, Kihara T (1998) Partial purification and characterization of sphingosine N-acyltransferase (ceramide synthase) from bovine liver mitochondrion-rich fraction. Lipids 33(6):601–605

    Article  PubMed  CAS  Google Scholar 

  • Siskind LJ, Mullen TD, Romero Rosales K, Clarke CJ, Hernandez-Corbacho MJ, Edinger AL, Obeid LM (2010) The BCL-2 protein BAK is required for long-chain ceramide generation during apoptosis. J Biol Chem 285(16):11818–11826

    Article  PubMed  CAS  Google Scholar 

  • Spassieva S, Seo JG, Jiang JC, Bielawski J, Alvarez-Vasquez F, Jazwinski SM, Hannun YA, Obeid LM (2006) Necessary role for the Lag1p motif in (dihydro)ceramide synthase activity. J Biol Chem 281(45):33931–33938

    Article  PubMed  CAS  Google Scholar 

  • Spassieva SD, Mullen TD, Townsend DM, Obeid LM (2009) Disruption of ceramide synthesis by CerS2 down-regulation leads to autophagy and the unfolded protein response. Biochem J 424(2):273–283

    Article  PubMed  CAS  Google Scholar 

  • Sperling P, Heinz E (2003) Plant sphingolipids: structural diversity, biosynthesis, first genes and functions. Biochim Biophys Acta 1632(1–3):1–15

    PubMed  CAS  Google Scholar 

  • Sridevi P, Alexander H, Laviad EL, Min J, Mesika A, Hannink M, Futerman AH, Alexander S (2010) Stress-induced ER to Golgi translocation of ceramide synthase 1 is dependent on proteasomal processing. Exp Cell Res 316(1):78–91

    Article  PubMed  CAS  Google Scholar 

  • Sridevi P, Alexander H, Laviad EL, Pewzner-Jung Y, Hannink M, Futerman AH, Alexander S (2009) Ceramide synthase 1 is regulated by proteasomal mediated turnover. Biochim Biophys Acta 1793(7):1218–1227

    Article  PubMed  CAS  Google Scholar 

  • Sulzer D, Mosharov E, Talloczy Z, Zucca FA, Simon JD, Zecca L (2008) Neuronal pigmented autophagic vacuoles: lipofuscin, neuromelanin, and ceroid as macroautophagic responses during aging and disease. J Neurochem 106(1):24–36

    Article  PubMed  CAS  Google Scholar 

  • Tidhar R, Ben-Dor S, Wang E, Kelly S, Merrill AH Jr, Futerman AH (2012) Acyl chain specificity of ceramide synthases is determined within a region of 150 residues in the Tram-Lag-CLN8 (TLC) domain. J Biol Chem 287(5):3197–3206

    Article  PubMed  CAS  Google Scholar 

  • Vallee B, Riezman H (2005) Lip1p: a novel subunit of acyl-CoA ceramide synthase. EMBO J 24(4):730–741

    Article  PubMed  CAS  Google Scholar 

  • van Hall T, Wolpert EZ, van Veelen P, Laban S, van der Veer M, Roseboom M, Bres S, Grufman P, de Ru A, Meiring H, de Jong A, Franken K, Teixeira A, Valentijn R, Drijfhout JW, Koning F, Camps M, Ossendorp F, Karre K, Ljunggren HG, Melief CJ, Offringa R (2006) Selective cytotoxic T-lymphocyte targeting of tumor immune escape variants. Nat Med 12(4):417–424

    Article  PubMed  Google Scholar 

  • Venkataraman K, Riebeling C, Bodennec J, Riezman H, Allegood JC, Sullards MC, Merrill AH Jr, Futerman AH (2002) Upstream of growth and differentiation factor 1 (uog1), a mammalian homolog of the yeast longevity assurance gene 1 (LAG1), regulates N-stearoyl-sphinganine (C18-(dihydro)ceramide) synthesis in a fumonisin B1-independent manner in mammalian cells. J Biol Chem 277(38):35642–35649

    Article  PubMed  CAS  Google Scholar 

  • Villen J, Beausoleil SA, Gerber SA, Gygi SP (2007) Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci U S A 104(5):1488–1493

    Article  PubMed  CAS  Google Scholar 

  • Wang E, Norred WP, Bacon CW, Riley RT, Merrill AH Jr (1991) Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme. J Biol Chem 266(22):14486–14490

    PubMed  CAS  Google Scholar 

  • Winter E, Ponting CP (2002) TRAM, LAG1 and CLN8: members of a novel family of lipid-sensing domains? Trends Biochem Sci 27(8):381–383

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Zhou J, McCoy DM, Mallampalli RK (2005) LASS5 is the predominant ceramide synthase isoform involved in de novo sphingolipid synthesis in lung epithelia. J Lipid Res 46(6):1229–1238

    Article  PubMed  CAS  Google Scholar 

  • Yacoub A, Hamed HA, Allegood J, Mitchell C, Spiegel S, Lesniak MS, Ogretmen B, Dash R, Sarkar D, Broaddus WC, Grant S, Curiel DT, Fisher PB, Dent P (2010) PERK-dependent regulation of ceramide synthase 6 and thioredoxin play a key role in mda-7/IL-24-induced killing of primary human glioblastoma multiforme cells. Cancer Res 70(3):1120–1129

    Article  PubMed  CAS  Google Scholar 

  • Yu B, Zhou S, Wang Y, Qian T, Ding G, Ding F, Gu X (2012) miR-221/222 promote Schwann cell proliferation and migration by targeting LASS2 following sciatic nerve injury. J Cell Sci 125:2675–2683

    Article  PubMed  CAS  Google Scholar 

  • Zhao L, Spassieva SD, Jucius TJ, Shultz LD, Shick HE, Macklin WB, Hannun YA, Obeid LM, Ackerman SL (2011) A deficiency of ceramide biosynthesis causes cerebellar purkinje cell neurodegeneration and lipofuscin accumulation. PLoS Genet 7(5):e1002063

    Article  PubMed  CAS  Google Scholar 

  • Zheng W, Kollmeyer J, Symolon H, Momin A, Munter E, Wang E, Kelly S, Allegood JC, Liu Y, Peng Q, Ramaraju H, Sullards MC, Cabot M, Merrill AH Jr (2006) Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim Biophys Acta 1758(12):1864–1884

    Article  PubMed  CAS  Google Scholar 

Download references

Note added in proof:

A recent paper by Zigdon H. et al., (2013) doi: 10.1074/jbc.M112.402719 shows that CerS2 deficiency lead to liver mitochondrial dysfunction, which results in chronic oxidative stress.

Acknowledgments We would like to thank Drs. Anthony H. Futerman, Elad Lavee Laviad, Shifra Ben-Dor, Steffen Jung, and Alexandra Mahler, as well as Oshrit Ben-David and Ruth Seiden, for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yael Pewzner-Jung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Park, JW., Pewzner-Jung, Y. (2013). Ceramide Synthases: Reexamining Longevity. In: Gulbins, E., Petrache, I. (eds) Sphingolipids: Basic Science and Drug Development. Handbook of Experimental Pharmacology, vol 215. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1368-4_5

Download citation

Publish with us

Policies and ethics