Skip to main content

Restorative Strategies for the Dopaminergic Nigrostriatal Projection Pathway

  • Conference paper
  • First Online:
Stereotactic and Functional Neurosurgery

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 117))

Abstract

New insights into the mechanism of dopaminergic (DA) nigrostriatal neuron degeneration and regeneration in experimental studies in animal models of Parkinson’s disease (PD) have opened up the discussion about novel therapeutic strategies such as cell-based therapies and neuroprotection of DA neurons. These cellular and molecular approaches aim at preventing or slowing down the progressive degeneration of DA neurons and/or replacing the lost ones. Here, a brief overview of basic principles and current strategies of these novel restorative approaches is discussed in light of experimental results and possible clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aron L, Klein R (2011) Repairing the parkinsonian brain with neurotrophic factors. Trends Neurosci 34:88–100

    Article  PubMed  CAS  Google Scholar 

  2. Backlund EO, Granberg PO, Hamberger B, Knutsson E, Martensson A, Sedvall G, Seiger A, Olson L (1985) Transplantation of adrenal medullary tissue to striatum in parkinsonism. First clinical trials. J Neurosurg 62:169–173

    Article  PubMed  CAS  Google Scholar 

  3. Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249:1436–1438

    Article  PubMed  CAS  Google Scholar 

  4. Blandini F, Porter RH, Greenamyre JT (1996) Glutamate and Parkinson’s disease. Mol Neurobiol 12:73–94

    Article  PubMed  CAS  Google Scholar 

  5. Brundin P, Dunnett S, Bjorklund A, Nikkhah G (2001) Transplanted dopaminergic neurons: more or less? Nat Med 7:512–513

    Article  PubMed  CAS  Google Scholar 

  6. Capetian P, Döbrössy M, Winkler C, Prinz M, Nikkhah G (2011) To be or not to be accepted: the role of immunogenicity of neural stem cells following transplantation into the brain in animal and human studies. Semin Immunopathol 33:619–626

    Article  PubMed  Google Scholar 

  7. Carvalho GA, Nikkhah G (2001) Subthalamic nucleus lesions are neuroprotective against terminal 6-OHDA-induced striatal lesions and restore postural balancing reactions. Exp Neurol 171:405–417

    Article  PubMed  CAS  Google Scholar 

  8. Chevalier G, Deniau JM (1990) Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci 13:277–280

    Article  PubMed  CAS  Google Scholar 

  9. Choi DW, Rothman SM (1990) The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 13:171–182

    Article  PubMed  CAS  Google Scholar 

  10. Döbrössy M, Busse M, Piroth T, Rosser A, Dunnett S, Nikkhah G (2010) Neurorehabilitation with neural transplantation. Neurorehabil Neural Repair 24:692–701

    Article  PubMed  Google Scholar 

  11. Dyson SC, Barker RA (2011) Cell-based therapies for Parkinson’s disease. Expert Rev Neurother 11:831–844

    Article  PubMed  CAS  Google Scholar 

  12. Falkenstein G, Rosenthal C, Reum T, Morgenstern R, Döbrössy M, Nikkhah G (2009) Pattern of long-term sensorimotor recovery following intrastriatal and – accumbens DA micrografts in a rat model of Parkinson’s disease. J Comp Neurol 515:41–55

    Article  PubMed  Google Scholar 

  13. Feger J, Hassani OK, Mouroux M (1997) The subthalamic nucleus and its connections. New electrophysiological and pharmacological data. Adv Neurol 74:31–43

    PubMed  CAS  Google Scholar 

  14. Foley P, Riederer P (1999) Pathogenesis and preclinical course of Parkinson’s disease. J Neural Transm Suppl 56:31–74

    Article  PubMed  CAS  Google Scholar 

  15. García J, Carlsson T, Döbrössy M, Nikkhah G, Winkler C (2011) Impact of dopamine to serotonin cell ratio in transplants on behavioral recovery and L-DOPA-induced dyskinesia. Neurobiol Dis 43:576–587

    Article  PubMed  Google Scholar 

  16. Gash DM, Zhang Z, Gerhardt G (1998) Neuroprotective and neurorestorative properties of GDNF. Ann Neurol 44:S121–S125

    PubMed  CAS  Google Scholar 

  17. Guridi J, Herrero MT, Luquin MR, Guillen J, Ruberg M, Laguna J, Vila M, Javoy-Agid F, Agid Y, Hirsch E, Obeso JA (1996) Subthalamotomy in parkinsonian monkeys. Behavioural and biochemical analysis. Brain 119(Pt 5):1717–1727

    Article  PubMed  Google Scholar 

  18. Guridi J, Obeso JA (1997) The role of the subthalamic nucleus in the origin of hemiballism and parkinsonism: new surgical perspectives. Adv Neurol 74:235–247

    PubMed  CAS  Google Scholar 

  19. Halliday G, Lees A, Stern M (2011) Milestones in Parkinson’s disease – clinical and pathologic features. Mov Dis 26:1015–1021

    Article  Google Scholar 

  20. Hassani OK, Mouroux M, Feger J (1996) Increased subthalamic neuronal activity after nigral dopaminergic lesion independent of disinhibition via the globus pallidus. Neuroscience 72:105–115

    Article  PubMed  CAS  Google Scholar 

  21. Isacson O (2009) Cell therapy ahead for Parkinson’s disease. Science 326:1060

    Article  PubMed  CAS  Google Scholar 

  22. Kearns CM, Cass WA, Smoot K, Kryscio R, Gash DM (1997) GDNF protection against 6-OHDA: time dependence and requirement for protein synthesis. J Neurosci 17:7111–7118

    PubMed  CAS  Google Scholar 

  23. Koller W, Wilkinson S, Pahwa R et al (1998) Surgical treatment options in Parkinson’s disease. In: Bakay R (ed) Neurosurgery clinics of North America: surgical treatment movement disorders. W. B. Saunders Company, Philadelphia, pp 295–306

    Google Scholar 

  24. Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14(5):504–506

    Article  PubMed  CAS  Google Scholar 

  25. Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L, McBride J, Chen EY, Palfi S, Roitberg BZ, Brown WD, Holden JE, Pyzalski R, Taylor MD, Carvey P, Ling Z, Trono D, Hantraye P, Deglon N, Aebischer P (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290:767–773

    Article  PubMed  CAS  Google Scholar 

  26. Lang AE, Lozano AM (1998) Parkinson’s disease. Second of two parts. N Engl J Med 339:1130–1143

    Article  PubMed  CAS  Google Scholar 

  27. LeWitt PA, Rezai AR, Leehey MA, Ojemann SG, Flaherty AW, Eskandar EN, Kostyk SK, Thomas K, Sarkar A, Siddiqui MS, Tatter SB, Schwalb JM, Poston KL, Henderson JM, Kurlan RM, Richard IH, Van Meter L, Sapan CV, During MJ, Kaplitt MG, Feigin A (2011) AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol 10:309–319

    Article  PubMed  CAS  Google Scholar 

  28. Levy R, Hazrati LN, Herrero MT, Vila M, Hassani OK, Mouroux M, Ruberg M, Asensi H, Agid Y, Feger J, Obeso JA, Parent A, Hirsch EC (1997) Re-evaluation of the functional anatomy of the basal ganglia in normal and Parkinsonian states. Neuroscience 76:335–343

    Article  PubMed  CAS  Google Scholar 

  29. Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, Lashley T, Quinn NP, Rehncrona S, Bjorklund A, Widner H, Revesz T, Lindvall O, Brundin P (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503

    Article  PubMed  CAS  Google Scholar 

  30. Lindvall O, Björklund A (2011) Cell therapeutics in Parkinson’s disease. Neurotherapeutics 8:539–548

    Article  PubMed  Google Scholar 

  31. Lindvall O, Kokaia Z (2010) Stem cells in human neurodegenerative disorders – time for clinical translation? J Clin Invest 120:29–40

    Article  PubMed  CAS  Google Scholar 

  32. Lindvall O, Rehncrona S, Brundin P, Gustavii B, Astedt B, Widner H, Lindholm T, Bjorklund A, Leenders KL, Rothwell JC, Frackowiak R, Marsden D, Johnels B, Steg G, Freedman R, Hoffer BJ, Seiger A, Bygdeman M, Strömberg I, Olson L (1989) Human fetal dopamine neurons grafted into the striatum in two patients with severe Parkinson’s disease. A detailed account of methodology and a 6-month follow-up. Arch Neurol 46:615–631

    Article  PubMed  CAS  Google Scholar 

  33. Maciaczyk J, Singec I, Maciaczyk D, Nikkhah G (2008) Combined use of BDNF, ascorbic acid, low oxygen, and prolonged differentiation time generates tyrosine hydroxylase-expressing neurons after long-term in vitro expansion of human fetal midbrain precursor cells. Exp Neurol 213(2):354–362

    Article  PubMed  CAS  Google Scholar 

  34. Madrazo I, Drucker-Colin R, Diaz V, Martinez-Mata J, Torres C, Becerril JJ (1987) Open microsurgical autograft of adrenal medulla to the right caudate nucleus in two patients with intractable Parkinson’s disease. N Engl J Med 316:831–834

    Article  PubMed  CAS  Google Scholar 

  35. Meissner WG, Frasier M, Gasser T, Goetz CG, Lozano A, Piccini P, Obeso JA, Rascol O, Schapira A, Voon V, Weiner DM, Tison F, Bezard E (2011) Priorities in Parkinson’s disease research. Nat Rev Drug Discov 10:377–393

    Article  PubMed  CAS  Google Scholar 

  36. Mendez I, Vinuela A, Astradsson A, Mukhida K, Hallett P, Robertson H, Tierney T, Holness R, Dagher A, Trojanowski JQ, Isacson O (2008) Dopamine neurons implanted into people with Parkinson’s disease survive without pathology for 14 years. Nat Med 14:507–509

    Article  PubMed  CAS  Google Scholar 

  37. Nikkhah G (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease: potential and pitfalls. Brain Res Bull 56:509

    Article  PubMed  CAS  Google Scholar 

  38. Nikkhah G, Falkenstein G, Rosenthal C (2001) Restorative plasticity of dopamine neuronal transplants depends on the degree of hemispheric dominance. J Neurosci 21:6252–6263

    PubMed  CAS  Google Scholar 

  39. Nikkhah G, Rosenthal C, Falkenstein G, Roedter A, Papazoglou A, Brandis A (2009) Microtransplantation of dopaminergic cell suspensions: further characterization and optimization of grafting parameters. Cell Transplant 18:119–133

    Article  PubMed  Google Scholar 

  40. Novelli A, Reilly JA, Lysko PG, Henneberry RC (1988) Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res 451:205–212

    Article  PubMed  CAS  Google Scholar 

  41. Olanow CW (1997) Attempts to obtain neuroprotection in Parkinson’s disease. Neurology 49:S26–S33

    Article  PubMed  CAS  Google Scholar 

  42. Olanow CW, Jenner P, Brooks D (1998) Dopamine agonists and neuroprotection in Parkinson’s disease. Ann Neurol 44:S167–S174

    Article  PubMed  CAS  Google Scholar 

  43. Olanow CW, Koller W, Goetz CG, Stebbins GT, Cahill DW, Gauger LL, Morantz R, Penn RD, Tanner CM, Klawans HL, Shannon KM, Comella CL, Witt T (1990) Autologous transplantation of adrenal medulla in Parkinson’s disease. 18-month results. Arch Neurol 47:1286–1289

    Article  PubMed  CAS  Google Scholar 

  44. Olanow CW, Mytilineou C, Tatton W (1998) Current status of selegiline as a neuroprotective agent in Parkinson’s disease. Mov Disord 13(Suppl 1):55–58

    PubMed  Google Scholar 

  45. Quinn N (1997) Parkinson’s disease: clinical features. In: Quinn N (ed) Clinical neurology. Parkinsonism. Bailliere Tindall, London, pp 1–13

    Google Scholar 

  46. Rodriguez MC, Obeso JA, Olanow CW (1998) Subthalamic nucleus-mediated excitotoxicity in Parkinson’s disease: a target for neuroprotection. Ann Neurol 44:S175–S188

    PubMed  CAS  Google Scholar 

  47. Roedter A, Winkler C, Samii M, Nikkhah G (2000) Complex sensorimotor behavioral changes after terminal striatal 6-OHDA lesion and transplantation of dopaminergic embryonic micrografts. Cell Transplant 9:197–214

    Google Scholar 

  48. Schapira A (1997) Pathogenesis of Parkinson’s disease. In: Quinn N (ed) Clinical neurology. International practice and research. Parkinsonism. Bailliere Tindall, London, pp 15–36

    Google Scholar 

  49. Singec I, Jandial R, Crain A, Nikkhah G, Snyder EY (2007) The leading edge of stem cell therapeutics. Annu Rev Med 58:313–328

    Article  PubMed  CAS  Google Scholar 

  50. Singec I, Knoth R, Meyer RP, Maciaczyk J, Volk B, Nikkhah G, Frotscher M, Snyder EY (2006) Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology. Nat Methods 3:801–806

    Article  PubMed  CAS  Google Scholar 

  51. Smith GS, Laxton AW, Tang-Wai DF, McAndrews MP, Diaconescu AO, Workman CI, Lozano AM (2012) Increased cerebral metabolism after 1 year of deep brain stimulation in Alzheimer disease. Arch Neurol. doi:10.1001/archneurol.2012.590

  52. Wichmann T, Bergman H, DeLong MR (1994) The primate subthalamic nucleus. I. Functional properties in intact animals. J Neurophysiol 72:494–506

    PubMed  CAS  Google Scholar 

  53. Wichmann T, Bergman H, DeLong MR (1994) The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism. J Neurophysiol 72:521–530

    PubMed  CAS  Google Scholar 

  54. Winkler C, Kirik D, Bjorklund A (2005) Cell transplantation in Parkinson’s disease: how can we make it work? Trends Neurosci 28:86–92

    Article  PubMed  CAS  Google Scholar 

  55. Winkler C, Sauer H, Lee CS, Björklund A (1996) Short-term GDNF treatment provides long-term rescue of lesioned nigral dopamine neurons in a rat model of Parkinson’s disease. J Neurosci 16:7206–7215

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Parts of the work presented here have been supported by grants from the Deutsche Forschungsgemeinschaft (Ni 330), the Graduate School Freiburg (DFG 843), the Weber Petri Foundation, the German Parkinson Foundation and the European Commission under the 7th Framework Programme HEALTH Collaborative Project Transeuro (Contract n 242003).

Conflict of InterestNo potential conflict of interest relevant to this article was reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Nikkhah MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this paper

Cite this paper

Nikkhah, G. (2013). Restorative Strategies for the Dopaminergic Nigrostriatal Projection Pathway. In: Nikkhah, G., Pinsker, M. (eds) Stereotactic and Functional Neurosurgery. Acta Neurochirurgica Supplement, vol 117. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1482-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1482-7_13

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1481-0

  • Online ISBN: 978-3-7091-1482-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics