Skip to main content

Hydrogen Sulfide as an Oxygen Sensor

  • Chapter
  • First Online:
Hydrogen Sulfide and its Therapeutic Applications

Abstract

Eukaryotic cells depend upon oxygen (O2) for their survival and elaborate mechanisms have evolved in multicellular animals, especially vertebrates, to monitor the availability of environmental O2, the efficiency of O2 extraction from the environment, ensure adequate O2 delivery to tissues and even to regulate cellular metabolism when O2 availability is compromised. In vertebrates, specialized O2 “sensing” cells have developed to carry out many of these processes. Although all O2 sensing cells ultimately couple low Po 2 (hypoxia) to physiological responses, how these cells actually detect hypoxia, i.e., the “O2 sensor” remains controversial. We have recently proposed that hydrogen sulfide (H2S) through its O2-dependent metabolism is a universal and phylogenetically ancient O2 sensing mechanism. This hypothesis is based on a variety of experimental evidence including; (1) the effects of exogenous H2S mimic hypoxia, (2) H2S production and/or metabolism is biochemically coupled to O2, (3) tissue H2S concentration is inversely related to Po 2 at physiologically relevant Po 2s, (4) compounds that inhibit or augment H2S production inhibit and augment hypoxic responses, (5) H2S acts upon effector mechanisms known to mediate hypoxic responses, (6) H2S was key to the origin of life and the advent of eukaryotic cells and the reciprocal relationship between O2 and H2S has been inexorably intertwined throughout evolution. The evidence for H2S-mediated O2 sensing is critically examined in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

3MP:

3-Mercaptopyruvate

3-MST:

3-Mercaptopyruvate sulfur transferase

AMPK:

AMP-activated protein kinase

AOA:

Amino-oxyacetate

AOX:

Alternative oxidase

Asp:

Aspartic acid

CAT:

Cysteine aminotransferase

CBS:

Cystathionine β-synthase

CDO:

Cysteine dioxygenase

CO:

Carbon monoxide

CSE:

Cystathionine γ-lyase

Cys:

Cysteine

DAO:

d-amino acid oxidase

DHLA:

Dihydrolipoic acid

EC50 :

Effective concentration for half-maximal activity

ETHE1:

Mitochondrial sulfur dioxygenase

Gly:

Glycine

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

H2O2 :

Hydrogen peroxide

H2S:

Hydrogen sulfide

HA:

Hydroxylamine

HIF:

Hypoxia-inducible factor

HPC:

Hypoxic pulmonary vasoconstriction

HSD:

Hypoxic systemic vasodilation

IKCa :

Intermediate conductance potassium channel

KATP :

Adenosine triphosphate sensitive potassium channel

KCl:

Potassium chloride

Ki :

Inhibition constant

Kv :

Voltage-gated potassium channels

NEB:

Neuroepithelial bodies

NEC:

Neuroepithelial cells

NO:

Nitric oxide

O2 :

Superoxide

PASMC:

Pulmonary artery smooth muscle cells

pB:

Pre-Bötzinger respiratory group

PKCε:

Protein kinase C epsilon

PLP:

Pyridoxal 5′phosphate

Po 2 :

Partial pressure of oxygen

PPG:

Propargyl glycine

Rde:

Rhodanase

RI:

Ischemia reperfusion injury

ROS:

Reactive oxygen species

R-SO:

Sulfenyl

S2O3 2− :

Thiosulfate

SO:

Sulfur oxidase

SO3 2− :

Sulfite

SO4 2− :

Sulfate

SQR:

Sulfide:quinone oxidoreductase

ST:

Sulfur transferase

TASK:

Acid-sensitive potassium channel

TR:

Thiosulfate reductase, a.k.a. rhodanase

TRD:

Thioredoxin reductase

Trx:

Thioredoxin

α-Kg:

α-ketoglutarate

References

  • Ackermann M, Kubitza M, Maier K, Brawanski A, Hauska G, Pina AL (2011) The vertebrate homolog of sulfide-quinone reductase is expressed in mitochondria of neuronal tissues. Neuroscience 199:1–12

    Article  PubMed  CAS  Google Scholar 

  • Banerjee R, Zou CG (2005) Redox regulation and reaction mechanism of human cystathionine-beta-synthase: a PLP-dependent hemesensor protein. Arch Biochem Biophys 433:144–156

    Article  PubMed  CAS  Google Scholar 

  • Baragatti B, Ciofini E, Sodini D, Luin S, Scebba F, Coceani F (2013) Hydrogen sulfide in the mouse ductus arteriosus: a naturally occurring relaxant with potential EDHF function. Am J Physiol Heart Circ Physiol 304:H927–H934

    Article  PubMed  CAS  Google Scholar 

  • Bearden SE, Beard RS Jr, Pfau JC (2010) Extracellular transsulfuration generates hydrogen sulfide from homocysteine and protects endothelium from redox stress. Am J Physiol Heart Circ Physiol 299:H1568–H1576

    Article  PubMed  CAS  Google Scholar 

  • Beauchamp RO Jr, Bus JS, Popp JA, Boreiko CJ, Andjelkovich DA (1984) A critical review of the literature on hydrogen sulfide toxicity. Crit Rev Toxicol 13:25–97

    Article  PubMed  CAS  Google Scholar 

  • Bian JS, Yong QC, Pan TT, Feng ZN, Ali MY, Zhou S, Moore PK (2006) Role of hydrogen sulfide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes. J Pharmacol Exp Ther 316:670–678

    Article  PubMed  CAS  Google Scholar 

  • Bickler PE, Buck LT (2007) Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. Annu Rev Physiol 69:145–170

    Article  PubMed  CAS  Google Scholar 

  • Bouillaud F, Blachier F (2011) Mitochondria and sulfide: a very old story of poisoning, feeding and signaling? Antioxid Redox Signal 15:379–391

    Article  PubMed  CAS  Google Scholar 

  • Bucci M, Papapetropoulos A, Vellecco V, Zhou Z, Pyriochou A, Roussos C, Roviezzo F, Brancaleone V, Cirino G (2010) Hydrogen sulfide is an endogenous inhibitor of phosphodiesterase activity. Arterioscler Thromb Vasc Biol 30:1998–2004

    Article  PubMed  CAS  Google Scholar 

  • Buckler KJ (2012) Effects of exogenous hydrogen sulphide on calcium signalling, background (TASK) K channel activity and mitochondrial function in chemoreceptor cells. Pflugers Arch 463:743–754

    Article  PubMed  CAS  Google Scholar 

  • Budde MW, Roth MB (2010) Hydrogen sulfide increases hypoxia-inducible factor-1 activity independently of von Hippel-Lindau tumor suppressor-1 in C. elegans. Mol Biol Cell 21:212–217

    Article  PubMed  CAS  Google Scholar 

  • Cai WJ, Wang MJ, Moore PK, Jin HM, Yao T, Zhu YC (2007) The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc Res 76:29–40

    Article  PubMed  CAS  Google Scholar 

  • Calvert JW, Elston M, Nicholson CK, Gundewar S, Jha S, Elrod JW, Ramachandran A, Lefer DJ (2010) Genetic and pharmacologic hydrogen sulfide therapy attenuates ischemia-induced heart failure in mice. Circulation 122:11–19

    Article  PubMed  Google Scholar 

  • Chen L, Zhang J, Ding Y, Li H, Nie L, Zhou H, Tang Y, Zheng Y (2013) Site-specific hydrogen sulfide-mediated central regulation of respiratory rhythm in medullary slices of neonatal rats. Neuroscience 233:118–126

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Ndisang JF, Tang G, Cao K, Wang R (2004) Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. Am J Physiol Heart Circ Physiol 287:H2316–H2323

    Article  PubMed  CAS  Google Scholar 

  • Derwall M, Francis RC, Kida K, Bougaki M, Crimi E, Adrie C, Zapol WM, Ichinose F (2011) Administration of hydrogen sulfide via extracorporeal membrane lung ventilation in sheep with partial cardiopulmonary bypass perfusion: a proof of concept study on metabolic and vasomotor effects. Crit Care 15:R51

    Article  PubMed  Google Scholar 

  • di d’Emmanuele Villa Bianca, Sorrentino R, Maffia P, Mirone V, Imbimbo C, Fusco F, De PR, Ignarro LJ, Cirino G (2009) Hydrogen sulfide as a mediator of human corpus cavernosum smooth-muscle relaxation. Proc Natl Acad Sci USA 106:4513–4518

    Article  Google Scholar 

  • Di Meo I, Fagiolari G, Prelle A, Viscomi C, Zeviani M, Tiranti V (2011) Chronic exposure to sulfide causes accelerated degradation of cytochrome C oxidase in ethylmalonic encephalopathy. Antioxid Redox Signal 15:353–362

    Article  PubMed  CAS  Google Scholar 

  • Doeller JE, Isbell TS, Benavides G, Koenitzer J, Patel H, Patel RP, Lancaster JR Jr, Drley-Usmar VM, Kraus DW (2005) Polarographic measurement of hydrogen sulfide production and consumption by mammalian tissues. Anal Biochem 341:40–51

    Article  PubMed  CAS  Google Scholar 

  • Dombkowski RA, Russell MJ, Schulman AA, Doellman MM, Olson KR (2005) Vertebrate phylogeny of hydrogen sulfide vasoactivity. Am J Physiol Regul Integr Comp Physiol 288:R243–R252

    Article  PubMed  CAS  Google Scholar 

  • Dombkowski RA, Doellman MM, Head SK, Olson KR (2006) Hydrogen sulfide mediates hypoxia-induced relaxation of trout urinary bladder smooth muscle. J Exp Biol 209:3234–3240

    Article  PubMed  CAS  Google Scholar 

  • Dombkowski RA, Naylor MG, Shoemaker E, Smith M, DeLeon ER, Stoy GF, Gao Y, Olson KR (2011) Hydrogen sulfide (HS) and hypoxia inhibit salmonid gastrointestinal motility: evidence for HS as an oxygen sensor. J Exp Biol 214:4030–4040

    Article  PubMed  CAS  Google Scholar 

  • Dromparis P, Michelakis ED (2013) Mitochondria in vascular health and disease. Annu Rev Physiol 75:95–126

    Article  PubMed  CAS  Google Scholar 

  • Drousiotou A, Di Meo I, Mineri R, Georgiou T, Stylianidou G, Tiranti V (2011) Ethylmalonic encephalopathy: application of improved biochemical and molecular diagnostic approaches. Clin Genet 79:385–390

    Article  PubMed  CAS  Google Scholar 

  • Evans AM, Hardie DG, Peers C, Mahmoud A (2011) Hypoxic pulmonary vasoconstriction: mechanisms of oxygen-sensing. Curr Opin Anaesthesiol 24:13–20

    Article  PubMed  Google Scholar 

  • Fu M, Zhang W, Wu L, Yang G, Li H, Wang R (2012) Hydrogen sulfide (H2S) metabolism in mitochondria and its regulatory role in energy production. Proc Natl Acad Sci USA 109:2943–2948

    Article  PubMed  CAS  Google Scholar 

  • Furne J, Saeed A, Levitt MD (2008) Whole tissue hydrogen sulfide concentrations are orders of magnitude lower than presently accepted values. Am J Physiol Regul Integr Comp Physiol 295:R1479–R1485

    Article  PubMed  CAS  Google Scholar 

  • Fusco F, di d’Emmanuele V, Mitidieri E, Cirino G, Sorrentino R, Mirone V (2012) Sildenafil effect on the human bladder involves the L-cysteine/hydrogen sulfide pathway: a novel mechanism of action of phosphodiesterase type 5 inhibitors. Eur Urol 62:1174–1180

    Article  PubMed  CAS  Google Scholar 

  • Giordano C, Viscomi C, Orlandi M, Papoff P, Spalice A, Burlina A, Di Meo I, Tiranti V, Leuzzi V, di Amati G, Zeviani M (2011) Morphologic evidence of diffuse vascular damage in human and in the experimental model of ethylmalonic encephalopathy. J Inherit Metab Dis 35(3):451–458

    Article  PubMed  Google Scholar 

  • Gonzalez C, Agapito MT, Rocher A, Gomez-Niño A, Rigual R, Castañeda J, Conde SV, Obeso A (2010) A revisit to O2 sensing and transduction in the carotid body chemoreceptors in the context of reactive oxygen species biology. Respir Physiol Neurobiol 174:317–330

    Article  PubMed  CAS  Google Scholar 

  • Goubern M, Andriamihaja M, Nubel T, Blachier F, Bouillaud F (2007) Sulfide, the first inorganic substrate for human cells. FASEB J 21:1699–1706

    Article  PubMed  CAS  Google Scholar 

  • Gupte SA, Wolin MS (2008) Oxidant and redox signaling in vascular oxygen sensing: implications for systemic and pulmonary hypertension. Antioxid Redox Signal 10:1137–1152

    Article  PubMed  CAS  Google Scholar 

  • Haggard HW, Henderson Y (1922) The influence of hydrogensulphide upon respiration. Am J Physiol 61:289–297

    CAS  Google Scholar 

  • Haldar SM, Stamler JS (2013) S-nitrosylation: integrator of cardiovascular performance and oxygen delivery. J Clin Invest 123:101–110

    Article  PubMed  CAS  Google Scholar 

  • Haouzi P (2012) Ventilatory and metabolic effects of exogenous hydrogen sulfide. Respir Physiol Neurobiol 184:170–177

    Article  PubMed  CAS  Google Scholar 

  • Haouzi P, Bell HJ, Notet V, Bihain B (2009) Comparison of the metabolic and ventilatory response to hypoxia and H2S in unsedated mice and rats. Respir Physiol Neurobiol 167:316–322

    Article  PubMed  CAS  Google Scholar 

  • Haouzi P, Bell H, Philmon M (2011) Hydrogen sulfide oxidation and the arterial chemoreflex: effect of methemoglobin. Respir Physiol Neurobiol 177:273–283

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt TM (2011) Modulation of sulfide oxidation and toxicity in rat mitochondria by dehydroascorbic acid. Biochim Biophys Acta 1807:1206–1213

    Article  PubMed  CAS  Google Scholar 

  • Hildebrandt TM, Grieshaber MK (2008) Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J 275:3352–3361

    Article  PubMed  CAS  Google Scholar 

  • Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237:527–531

    Article  PubMed  CAS  Google Scholar 

  • Hu H, Shi Y, Chen Q, Yang W, Zhou H, Chen L, Tang Y, Zheng Y (2008) Endogenous hydrogen sulfide is involved in regulation of respiration in medullary slice of neonatal rats. Neuroscience 156:1074–1082

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Khan S, O’Brien PJ (1998) The glutathione dependence of inorganic sulfate formation from L- or D-cysteine in isolated rat hepatocytes. Chem Biol Interact 110:189–202

    Article  PubMed  CAS  Google Scholar 

  • Jackson MR, Melideo SL, Jorns MS (2012) Human sulfide: quinone oxidoreductase catalyzes the first step in hydrogen sulfide metabolism and produces a sulfane sulfur metabolite. Biochemistry 51:6804–6815

    Article  PubMed  CAS  Google Scholar 

  • Jackson-Weaver O, Paredes DA, Gonzalez Bosc LV, Walker BR, Kanagy NL (2011) Intermittent hypoxia in rats increases myogenic tone through loss of hydrogen sulfide activation of large-conductance Ca(2+)-activated potassium channels. Circ Res 108:1439–1447

    Article  PubMed  CAS  Google Scholar 

  • Jeroschewski P, Steuckart C, Kuhl M (1996) An amperometric microsensor for the determination of H2S in aquatic environments. Anal Chem 68:4351–4357

    Article  CAS  Google Scholar 

  • Jiang B, Tang G, Cao K, Wu L, Wang R (2010) Molecular mechanism for H(2)S-induced activation of K(ATP) channels. Antioxid Redox Signal 12:1167–1178

    Article  PubMed  CAS  Google Scholar 

  • Julian D, Statile JL, Wohlgemuth SE, Arp AJ (2002) Enzymatic hydrogen sulfide production in marine invertebrate tissues. Comp Biochem Physiol A Mol Integr Physiol 133:105–115

    Article  PubMed  Google Scholar 

  • Kabil O, Banerjee R (2010) Redox biochemistry of hydrogen sulfide. J Biol Chem 285:21903–21907

    Article  PubMed  CAS  Google Scholar 

  • Kai S, Tanaka T, Daijo H, Harada H, Kishimoto S, Suzuki K, Takabuchi S, Takenaga K, Fukuda K, Hirota K (2012) Hydrogen sulfide inhibits hypoxia- but not anoxia-induced hypoxia-inducible factor 1 activation in a von hippel-lindau- and mitochondria-dependent manner. Antioxid Redox Signal 16:203–216

    Article  PubMed  CAS  Google Scholar 

  • Kamoun P (2004) Endogenous production of hydrogen sulfide in mammals. Amino Acids 26:243–254

    Article  PubMed  CAS  Google Scholar 

  • Kemp PJ, Lewis A, Hartness ME, Searle GJ, Miller P, O’Kelly I, Peers C (2002) Airway chemotransduction: from oxygen sensor to cellular effector. Am J Respir Crit Care Med 166:S17–S24

    Article  PubMed  Google Scholar 

  • Kimura H (2010) Hydrogen sulfide: its production, release and functions. Amino Acids 41:113–121

    Article  PubMed  CAS  Google Scholar 

  • Klentz RD, Fedde MR (1978) Hydrogen sulfide: effects on avian respiratory control and intrapulmonary CO2 receptors. Respir Physiol 32:355–367

    Article  PubMed  CAS  Google Scholar 

  • Koj A, Frendo J, Wojtczak L (1975) Subcellular distribution and intramitochondrial localization of three sulfurtransferases in rat liver. FEBS Lett 57:42–46

    Article  PubMed  CAS  Google Scholar 

  • Kraus DW, Doeller JE (2004) Sulfide consumption by mussel gill mitochondria is not strictly tied to oxygen reduction: measurements using a novel polargraphic sulfide sensor. J Exp Biol 207:3667–3679

    Article  PubMed  CAS  Google Scholar 

  • Kwiatkoski M, Soriano RN, Francescato HD, Batalhao ME, Coimbra TM, Carnio EC, Branco LG (2012) Hydrogen sulfide as a cryogenic mediator of hypoxia-induced anapyrexia. Neuroscience 201:146–156

    Article  PubMed  CAS  Google Scholar 

  • Lagoutte E, Mimoun S, Andriamihaja M, Chaumontet C, Blachier F, Bouillaud F (2010) Oxidation of hydrogen sulfide remains a priority in mammalian cells and causes reverse electron transfer in colonocytes. Biochim Biophys Acta 1797:1500–1511

    Article  PubMed  CAS  Google Scholar 

  • Lan A, Liao X, Mo L, Yang C, Yang Z, Wang X, Hu F, Chen P, Feng J, Zheng D, Xiao L (2011) Hydrogen sulfide protects against chemical hypoxia-induced injury by inhibiting ROS-activated ERK1/2 and p38MAPK signaling pathways in PC12 cells. PLoS One 6:e25921

    Article  PubMed  CAS  Google Scholar 

  • Lavu M, Bhushan S, Lefer DJ (2010) Hydrogen sulfide-mediated cardioprotection: mechanisms and therapeutic potential. Clin Sci (Lond) 120:219–229

    Google Scholar 

  • Leffler CW, Parfenova H, Basuroy S, Jaggar JH, Umstot ES, Fedinec AL (2010) Hydrogen sulfide and cerebral microvascular tone in newborn pigs. Am J Physiol Heart Circ Physiol 300:H440–H447

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Sun B, Wang X, Jin Z, Zhou Y, Dong L, Jiang LH, Rong W (2010) A crucial role for hydrogen sulfide in oxygen sensing via modulating large conductance calcium-activated potassium channels. Antioxid Redox Signal 12:1179–1189

    Article  PubMed  CAS  Google Scholar 

  • Liang GH, Adebiyi A, Leo MD, McNally EM, Leffler CW, Jaggar JH (2011) Hydrogen sulfide dilates cerebral arterioles by activating smooth muscle cell plasma membrane KATP channels. Am J Physiol Heart Circ Physiol 300:H2088–H2095

    Article  PubMed  CAS  Google Scholar 

  • Liang GH, Xi Q, Leffler CW, Jaggar JH (2012) Hydrogen sulfide activates Ca(2)(+) sparks to induce cerebral arteriole dilatation. J Physiol 590:2709–2720

    Article  PubMed  CAS  Google Scholar 

  • Linden DR, Furne J, Stoltz GJ, Ddel-Rehim MS, Levitt MD, Szurszewski JH (2011) Sulfide quinone reductase contributes to hydrogen sulfide metabolism in murine peripheral tissues but not in the central nervous system. Br J Pharmacol 165:2178–2190

    Article  CAS  Google Scholar 

  • Liu X, Pan L, Zhuo Y, Gong Q, Rose P, Zhu Y (2010) Hypoxia-inducible factor-1 alpha is involved in the pro-angiogenic effect of hydrogen sulfide under hypoxic stress. Biol Pharm Bull 33:1550–1554

    Article  PubMed  CAS  Google Scholar 

  • Liu WQ, Chai C, Li XY, Yuan WJ, Wang WZ, Lu Y (2011) The cardiovascular effects of central hydrogen sulphide are related to K(ATP) channels activation. Physiol Res 60:729–738

    PubMed  CAS  Google Scholar 

  • Madden JA, Vadula MS, Kurup VP (1992) Effects of hypoxia and other vasoactive agents on pulmonary and cerebral artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 263:L384–L393

    CAS  Google Scholar 

  • Madden JA, Ahlf SB, Dantuma MW, Olson KR, Roerig DL (2012) Precursors and inhibitors of hydrogen sulfide synthesis affect acute hypoxic pulmonary vasoconstriction in the intact lung. J Appl Physiol 112:411–418

    Article  PubMed  CAS  Google Scholar 

  • Makarenko VV, Nanduri J, Raghuraman G, Fox AP, Gadalla MM, Kumar GK, Snyder SH, Prabhakar NR (2012) Endogenous H2S is required for hypoxic sensing by carotid body glomus cells. Am J Physiol Cell Physiol 303:C916–C923

    Article  PubMed  CAS  Google Scholar 

  • Marcia M, Ermler U, Peng G, Michel H (2010) A new structure-based classification of sulfide: quinone oxidoreductases. Proteins 78:1073–1083

    Article  PubMed  CAS  Google Scholar 

  • Martelli A, Testai L, Breschi MC, Lawson K, McKay NG, Miceli F, Taglialatela M, Calderone V (2013) Vasorelaxation by hydrogen sulphide involves activation of Kv7 potassium channels. Pharmacol Res 70:27–34

    Article  PubMed  CAS  Google Scholar 

  • Meng JL, Mei WY, Dong YF, Wang JH, Zhao CM, Lan AP, Yang CT, Chen PX, Feng JQ, Hu CH (2011) Heat shock protein 90 mediates cytoprotection by H2S against chemical hypoxia-induced injury in PC12 cells. Clin Exp Pharmacol Physiol 38:42–49

    Article  PubMed  CAS  Google Scholar 

  • Mikami Y, Shibuya N, Kimura Y, Nagahara N, Ogasawara Y, Kimura H (2011a) Thioredoxin and dihydrolipoic acid are required for 3-mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. Biochem J 439:479–485

    Article  PubMed  CAS  Google Scholar 

  • Mikami Y, Shibuya N, Kimura Y, Nagahara N, Yamada M, Kimura H (2011b) Hydrogen sulfide protects the retina from light-induced degeneration by the modulation of Ca2+ influx. J Biol Chem 286:39379–39386

    Article  PubMed  CAS  Google Scholar 

  • Mikami Y, Shibuya N, Ogasawara Y, Kimura H (2013) Hydrogen sulfide is produced by cystathionine gamma-lyase at the steady-state low intracellular Ca(2+) concentrations. Biochem Biophys Res Commun 431:131–135

    Article  PubMed  CAS  Google Scholar 

  • Milsom WK, Burleson ML (2007) Peripheral arterial chemoreceptors and the evolution of the carotid body. Respir Physiol Neurobiol 157:4–11

    Article  PubMed  CAS  Google Scholar 

  • Modis K, Coletta C, Erdelyi K, Papapetropoulos A, Szabo C (2013) Intramitochondrial hydrogen sulfide production by 3-mercaptopyruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics. FASEB J 27:601–611

    Article  PubMed  CAS  Google Scholar 

  • Mudd SH, Irreverre F, Laster L (1967) Sulfite oxidase deficiency in man: demonstration of the enzymatic defect. Science 156:1599–1602

    Article  PubMed  CAS  Google Scholar 

  • Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Gazi SK, Barrow RK, Yang G, Wang R, Snyder SH (2009) H2S signals through protein S-sulfhydration. Sci Signal 2:ra72

    Article  PubMed  Google Scholar 

  • Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK, Barodka VM, Gazi FK, Barrow RK, Wang R, Amzel LM, Berkowitz DE, Snyder SH (2011) Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 109:1259–1268

    Article  PubMed  CAS  Google Scholar 

  • Nagahara N (2011) Catalytic site cysteines of thiol enzyme: sulfurtransferases. J Amino Acids 2011:1–7

    Article  CAS  Google Scholar 

  • Nagahara N (2012) Regulation of mercaptopyruvate sulfurtransferase activity via intrasubunit and intersubunit redox-sensing switches. Antioxid Redox Signal

    Google Scholar 

  • Nurse CA, Buttigieg J, Thompson R, Zhang M, Cutz E (2006) Oxygen sensing in neuroepithelial and adrenal chromaffin cells. Novartis Found Symp 272:106–114

    Article  PubMed  CAS  Google Scholar 

  • Olson KR (2011) Hydrogen sulfide is an oxygen sensor in the carotid body. Respir Physiol Neurobiol 179:103–110

    Article  PubMed  CAS  Google Scholar 

  • Olson KR (2012a) A practical look at the chemistry and biology of hydrogen sulfide. Antioxid Redox Signal 17:32–44

    Article  PubMed  CAS  Google Scholar 

  • Olson KR (2012b) Hydrogen sulfide as an oxygen sensor. Clin Chem Lab Med 51:623–632

    Google Scholar 

  • Olson KR (2012c) Mitochondrial adaptations to utilize hydrogen sulfide for energy and signaling. J Comp Physiol B 182:881–897

    Article  PubMed  CAS  Google Scholar 

  • Olson KR (2013) A theoretical examination of hydrogen sulfide metabolism and its potential in autocrine/paracrine oxygen sensing. Respir Physiol Neurobiol 186:173–179

    Article  PubMed  CAS  Google Scholar 

  • Olson KR, Whitfield NL (2010) Hydrogen sulfide and oxygen sensing in the cardiovascular system. Antioxid Redox Signal 12:1219–1234

    Article  PubMed  CAS  Google Scholar 

  • Olson KR, Dombkowski RA, Russell MJ, Doellman MM, Head SK, Whitfield NL, Madden JA (2006) Hydrogen sulfide as an oxygen sensor/transducer in vertebrate hypoxic vasoconstriction and hypoxic vasodilation. J Exp Biol 209:4011–4023

    Article  PubMed  CAS  Google Scholar 

  • Olson KR, Healy M, Qin J, Skovgaard N, Vulesevic B, Duff DW, Whitfield NL, Yang G, Wang R, Perry SF (2008) Hydrogen sulfide as an oxygen sensor in trout gill chemoreceptors. Am J Physiol Regul Integr Comp Physiol 295:R669–R680

    Article  PubMed  CAS  Google Scholar 

  • Olson KR, Whitfield NL, Bearden SE, St. Leger J, Nilson E, Gao Y, Madden JA (2010) Hypoxic pulmonary vasodilation: a paradigm shift with a hydrogen sulfide mechanism. Am J Physiol Regul Integr Comp Physiol 298:R51–R60

    Article  PubMed  CAS  Google Scholar 

  • Olson KR, DeLeon ER, Gao Y, Hurley K, Sadauskas V, Batz C (2013) Thiosulfate: a readily accessible source of hydrogen sulfide in oxygen sensing. Am J Physiol Regul Integr Comp Physiol (in press)

    Google Scholar 

  • Pan TT, Feng ZN, Lee SW, Moore PK, Bian JS (2006) Endogenous hydrogen sulfide contributes to the cardioprotection by metabolic inhibition preconditioning in the rat ventricular myocytes. J Mol Cell Cardiol 40:119–130

    Article  PubMed  CAS  Google Scholar 

  • Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A, Zhou Z, Jeschke MG, Branski LK, Herndon DN, Wang R, Szabo C (2009) Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci USA 106:21972–21977

    Article  PubMed  CAS  Google Scholar 

  • Peng YJ, Nanduri J, Raghuraman G, Souvannakitti D, Gadalla MM, Kumar GK, Snyder SH, Prabhakar NR (2010) H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci USA 107:10719–10724

    Article  PubMed  CAS  Google Scholar 

  • Perry SF, Montpetit CJ, Borowska M (2000) The effects of acute hypoxia on chemically or neuronally induced catecholamine secretion in rainbow trout (Oncorhynchus mykiss) in situ and in vivo. J Exp Biol 203:1487–1495

    PubMed  CAS  Google Scholar 

  • Perry SF, McNeill B, Elia E, Nagpal A, Vulesevic B (2009) Hydrogen sulfide stimulates catecholamine secretion in rainbow trout (Oncorhynchus mykiss). Am J Physiol Regul Integr Comp Physiol 296:R133–R140

    Article  PubMed  CAS  Google Scholar 

  • Rajapakshe A, Tollin G, Enemark JH (2012) Kinetic and thermodynamic effects of mutations of human sulfite oxidase. Chem Biodivers 9:1621–1634

    Article  PubMed  CAS  Google Scholar 

  • Reiffenstein RJ, Hulbert WC, Roth SH (1992) Toxicology of hydrogen sulfide. Annu Rev Pharmacol Toxicol 32:109–134

    Article  PubMed  CAS  Google Scholar 

  • Roman HB, Hirschberger LL, Krijt J, Valli A, Kozich V, Stipanuk MH (2013) The cysteine dioxygenase knockout mouse: altered cysteine metabolism in nonhepatic tissues leads to excess H2S/HS production and evidence of pancreatic and lung toxicity. Antioxid Redox Signal

    Google Scholar 

  • Russell MJ, Dombkowski RA, Olson KR (2008) Effects of hypoxia on vertebrate blood vessels. J Exp Zool A Ecol Genet Physiol 309:55–63

    Article  PubMed  Google Scholar 

  • Schultz HD, Del RR, Ding Y, Marcus NJ (2012) Role of neurotransmitter gases in the control of the carotid body in heart failure. Respir Physiol Neurobiol 184:197–203

    Article  PubMed  CAS  Google Scholar 

  • Shibuya N, Koike S, Tanaka M, Ishigami-Yuasa M, Kimura Y, Ogasawara Y, Fukui K, Nagahara N, Kimura H (2013) A novel pathway for the production of hydrogen sulfide from D-cysteine in mammalian cells. Nat Commun 4:1366

    Article  PubMed  CAS  Google Scholar 

  • Si YF, Wang J, Guan J, Zhou L, Sheng Y, Zhao J (2013) Treatment with hydrogen sulfide alleviates streptozotocin-induced diabetic retinopathy in rats. Br J Pharmacol 169:619–631

    Article  PubMed  CAS  Google Scholar 

  • Sims B, Clarke M, Francillion L, Kindred E, Hopkins ES, Sontheimer H (2012) Hypoxic preconditioning involves system Xc- regulation in mouse neural stem cells. Stem Cell Res 8:285–291

    Article  PubMed  CAS  Google Scholar 

  • Sitdikova GF, Weiger TM, Hermann A (2010) Hydrogen sulfide increases calcium-activated potassium (BK) channel activity of rat pituitary tumor cells. Pflugers Arch 459:389–397

    Article  PubMed  CAS  Google Scholar 

  • Skovgaard N, Olson KR (2012) Hydrogen sulfide mediates hypoxic vasoconstriction through a production of mitochondrial ROS in trout gills. Am J Physiol Regul Integr Comp Physiol 303:R487–R494

    Article  PubMed  CAS  Google Scholar 

  • Sowmya S, Swathi Y, Yeo AL, Shoon ML, Moore PK, Bhatia M (2010) Hydrogen sulfide: regulatory role on blood pressure in hyperhomocysteinemia. Vascul Pharmacol 53:138–143

    Article  PubMed  CAS  Google Scholar 

  • Stipanuk MH (2004) Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annu Rev Nutr 24:539–577

    Article  PubMed  CAS  Google Scholar 

  • Stipanuk MH, Ueki I (2011) Dealing with methionine/homocysteine sulfur: cysteine metabolism to taurine and inorganic sulfur. J Inherit Metab Dis 34:17–32

    Article  PubMed  CAS  Google Scholar 

  • Stipanuk MH, Ueki I, Dominy JE Jr, Simmons CR, Hirschberger LL (2009) Cysteine dioxygenase: a robust system for regulation of cellular cysteine levels. Amino Acids 37:55–63

    Article  PubMed  CAS  Google Scholar 

  • Sudhahar CG, Lee J, Buck LE, Olson KR, Stahelin RV (2013) Hydrogen sulfide induces the membrane translocation of protein kinase Cε through sulfhydration of the C2 domain. Antioxid Redox Signal (in press)

    Google Scholar 

  • Sylvester JT, Shimoda LA, Aaronson PI, Ward JP (2012) Hypoxic pulmonary vasoconstriction. Physiol Rev 92:367–520

    Article  PubMed  CAS  Google Scholar 

  • Szabó C (2007) Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 6:917–935

    Article  PubMed  CAS  Google Scholar 

  • Szabo C, Papapetropoulos A (2011) Hydrogen sulfide and angiogenesis: mechanisms and applications. Br J Pharmacol 164:853–865

    Article  PubMed  CAS  Google Scholar 

  • Tao BB, Liu SY, Zhang CC, Fu W, Cai WJ, Wang Y, Shen Q, Wang MJ, Chen Y, Zhu Y, Zhu YC (2012) VEGFR2 functions as an H2S-targeting receptor protein kinase with its novel Cys1045-Cys1024 disulfide bond serving as a specific molecular switch for hydrogen sulfide actions in vascular endothelial cells. Antioxid Redox Signal. doi:10.1089/ars.2012.4565

    Google Scholar 

  • Telezhkin V, Brazier SP, Cayzac S, Muller CT, Riccardi D, Kemp PJ (2009) Hydrogen sulfide inhibits human BK(Ca) channels. Adv Exp Med Biol 648:65–72

    Article  PubMed  CAS  Google Scholar 

  • Telezhkin V, Brazier SP, Cayzac SH, Wilkinson WJ, Riccardi D, Kemp PJ (2010) Mechanism of inhibition by hydrogen sulfide of native and recombinant BKCa channels. Respir Physiol Neurobiol 172:169–178

    Article  PubMed  CAS  Google Scholar 

  • Theissen U, Martin W (2008) Sulfide: quinone oxidoreductase (SQR) from the lugworm Arenicola marina shows cyanide- and thioredoxin-dependent activity. FEBS J 275:1131–1139

    Article  PubMed  CAS  Google Scholar 

  • Tiranti V, Viscomi C, Hildebrandt T, Di Meo I, Mineri R, Tiveron C, Levitt MD, Prelle A, Fagiolari G, Rimoldi M, Zeviani M (2009) Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. Nat Med 15:200–205

    Article  PubMed  CAS  Google Scholar 

  • Ueki I, Roman HB, Valli A, Fieselmann K, Lam J, Peters R, Hirschberger LL, Stipanuk MH (2011) Knockout of the murine cysteine dioxygenase gene results in severe impairment in ability to synthesize taurine and an increased catabolism of cysteine to hydrogen sulfide. Am J Physiol Endocrinol Metab 301:E668–E684

    Article  PubMed  CAS  Google Scholar 

  • Van de Louw A, Haouzi P (2012) Inhibitory effects of hyperoxia and methemoglobinemia on H(2)S induced ventilatory stimulation in the rat. Respir Physiol Neurobiol 181:326–334

    Article  PubMed  CAS  Google Scholar 

  • Villarejo M, Westley J (1963) Mechanism of rhodanese catalysis of thiosulfate-lipoate oxidation-reduction. J Biol Chem 238:4016–4020

    PubMed  CAS  Google Scholar 

  • Wang MJ, Cai WJ, Li N, Ding YJ, Chen Y, Zhu YC (2010a) The hydrogen sulfide donor NaHS promotes angiogenesis in a rat model of hind limb ischemia. Antioxid Redox Signal 12:1065–1077

    Article  PubMed  CAS  Google Scholar 

  • Wang MJ, Cai WJ, Zhu YC (2010b) Mechanisms of angiogenesis: role of hydrogen sulphide. Clin Exp Pharmacol Physiol 37:764–771

    Article  PubMed  CAS  Google Scholar 

  • Waypa GB, Schumacker PT (2010) Hypoxia-induced changes in pulmonary and systemic vascular resistance: where is the O2 sensor? Respir Physiol Neurobiol 174:201–211

    Article  PubMed  CAS  Google Scholar 

  • Waypa GB, Marks JD, Guzy R, Mungai PT, Schriewer J, Dokic D, Schumacker PT (2010) Hypoxia triggers subcellular compartmental redox signaling in vascular smooth muscle cells. Circ Res 106:526–535

    Article  PubMed  CAS  Google Scholar 

  • Weir EK, Archer SL (1995) The mechanism of acute hypoxic pulmonary vasoconstriction: the tale of two channels. FASEB J 9:183–189

    PubMed  CAS  Google Scholar 

  • Whitfield NL, Kreimier EL, Verdial FC, Skovgaard N, Olson KR (2008) Reappraisal of H2S/sulfide concentration in vertebrate blood and its potential significance in ischemic preconditioning and vascular signaling. Am J Physiol Regul Integr Comp Physiol 294:R1930–R1937

    Article  PubMed  CAS  Google Scholar 

  • Wolin MS, Gupte SA, Neo BH, Gao Q, Ahmad M (2010) Oxidant-redox regulation of pulmonary vascular responses to hypoxia and nitric oxide-cGMP signaling. Cardiol Rev 18:89–93

    Article  PubMed  Google Scholar 

  • Wu B, Teng H, Yang G, Wu L, Wang R (2012) Hydrogen sulfide inhibits the translational expression of hypoxia-inducible factor-1alpha. Br J Pharmacol 167:1492–1505

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Do J, Tang C (2004) The possible role of hydrogen sulfide on the pathogenesis of spontaneous hypertension in rats. Biochem Biophys Res Commun 313:22–27

    Article  PubMed  CAS  Google Scholar 

  • Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322:587–590

    Article  PubMed  CAS  Google Scholar 

  • Yang C, Yang Z, Zhang M, Dong Q, Wang X, Lan A, Zeng F, Chen P, Wang C, Feng J (2011) Hydrogen Sulfide Protects against Chemical Hypoxia-Induced Cytotoxicity and Inflammation in HaCaT Cells through Inhibition of ROS/NF-kappaB/COX-2 Pathway. PLoS One 6:e21971

    Article  PubMed  CAS  Google Scholar 

  • Yong QC, Lee SW, Foo CS, Neo KL, Chen X, Bian JS (2008) Endogenous hydrogen sulphide mediates the cardioprotection induced by ischemic postconditioning. Am J Physiol Heart Circ Physiol 295:H1330–H1340

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Xie Y, Xu Y, Pan Y, Shao C (2011) Hydrogen sulfide contributes to hypoxia-induced radioresistance on hepatoma cells. J Radiat Res 52:622–628

    Article  PubMed  CAS  Google Scholar 

  • Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H2S as a novel endogenous KATP channel opener. EMBO J 20:6008–6016

    Article  PubMed  CAS  Google Scholar 

  • Zhu D, Yu X, Sun J, Li J, Ma X, Yao W (2012) H2S induces catecholamine secretion in rat adrenal chromaffin cells. Toxicology 302:40–43

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author wishes to acknowledge the numerous colleagues that contributed to this research. The author’s work has been supported by National Science Foundation Grants, IBN 0235223, IOS 0641436 and IOS 1051627.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth R. Olson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Olson, K.R. (2013). Hydrogen Sulfide as an Oxygen Sensor. In: Kimura, H. (eds) Hydrogen Sulfide and its Therapeutic Applications. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1550-3_2

Download citation

Publish with us

Policies and ethics