Skip to main content

On scale-dependent crystal plasticity models

  • Chapter
Plasticity and Beyond

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 550))

Abstract

An extended crystal plasticity theory that accounts for the length-scale effects in plastic strain gradient fields is presented. First, foundations and kinematics of crystal plasticity theory is reviewed. Then, experimental evidences for the size-effects in small-sized bent single crystals are presented. Total amounts of apparent strain hardening, which were experimentally observed, are decomposed into isotropic and kinematic hardening components. Physically-based models are formulated to describe the size-dependent isotropic and kinematic hardening behaviors, utilizing possible micromechanical information with respect to dislocations and their motions. Roles of the geometrically necessary dislocations (GNDs) in strain hardening behavior are studied in detail. Furthermore, some aspects of numerical computations of the extended size-dependent crystal plasticity theory are presented. The developed theory involves extra boundary conditions for crystallographic slips and/or the GND densities. Effects of these extra boundary conditions are demonstrated through numerical simulations for some basic boundary value problems. Finally, a phenomenological strain gradient plasticity theory is revisited, based on the knowledge from the present size-dependent crystal plasticity theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • A. Acharya. A model of crystal plasticity based on the theory of continuously distributed dislocations. Journal of the Mechanics and Physics of Solids, 49:761–784, 2001.

    Article  MATH  Google Scholar 

  • A. Acharya and J.L. Bassani. Lattice incompatibility and a gradient theory of crystal plasticity. Journal of the Mechanics and Physics of Solids, 48: 1565–1595, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  • E.C. Aifantis. On the microstructural origin of certain inelastic models. Journal of Engineering Materials and Technology, 106:326–330, 1984.

    Article  Google Scholar 

  • A. Arsenlis, D.M. Parks, R. Becker, and V.V. Bulatov. On the evolution of crystallographic dislocation density in non-homogeneously deforming crystals. Journal of the Mechanics and Physics of Solids, 52:1213–1246, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  • R.J. Asaro and A. Needleman. Texture development and strain hardening in rate dependent polycrystals. Acta Metallurgica, 33:923–953, 1985.

    Article  Google Scholar 

  • M.F. Ashby. The deformation of plastically non-homogeneous materials. Philosophical Magazine, 21:399–424, 1970.

    Article  Google Scholar 

  • C.J. Bayley, W.A.M. Brekelmans, and M.G.D. Geers. A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity. International Journal of Solids and Structures, 43:7268–7286, 2006.

    Article  MATH  Google Scholar 

  • P. Cermelli and M.E. Gurtin. On the characterization of geometrically necessary dislocations in finite plasticity. Journal of the Mechanics and Physics of Solids, 29:1531–1568,, 2001.

    Google Scholar 

  • A.H. Cottrell. Dislocations and plastic flow in crystals. Oxford University Press, London, 1953.

    MATH  Google Scholar 

  • D.M. Dimiduk, M.D. Uchic, and T.A. Parthasarathy. Size-affected singleslip behavior of pure nickel microcrystals. Acta Materialia, 53:4065–4077, 2005.

    Article  Google Scholar 

  • B. Ehrler, X.D. Hou, T.T. Zhu, K.M.Y. Png, C.J. Walker, A.J. Bushby, and D.J. Dunstan. Grain size and sample size interact to determine strength in a soft metal. Philosophical Magazine, 25:3043–3050, 2008.

    Article  Google Scholar 

  • U. Essmann and H. Mughrabi. Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities. Philosophical Magazine, A40:731–756, 1979.

    Google Scholar 

  • L.P. Evers, W.A.M. Brekelmans, and M.G.D. Geers. Non-local crystal plasticity model with intrinsic SSD and GND effects. Journal of the Mechanics and Physics of Solids, 52:2379–2401, 2004.

    Article  MATH  Google Scholar 

  • N.A. Fleck and J.W. Hutchinson. A reformulation of strain gradient plasticity. Journal of the Mechanics and Physics of Solids, 49:2245–2271, 2001.

    Article  MATH  Google Scholar 

  • N.A. Fleck, G.M. Muller, M.F. Ashby, and J.W. Hutchinson. Strain gradient plasticity: theory and experiment. Acta Metallurgica et Materialia, 42: 475–487, 1994.

    Article  Google Scholar 

  • M.G.D. Geers, W.A.M. Brekelmans, and C.J. Bayley. Second-order crystal plasticity: internal stress effects and cyclic loading. Modelling and Simulation in Materials Science and Engineering, 16:S133–S145, 2007.

    Article  Google Scholar 

  • I. Groma, F.F. Csikor, and M. Zaiser. Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics. Acta Materialia, 51:1271–1281, 2003.

    Article  Google Scholar 

  • M.E. Gurtin. A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. Journal of the Mechanics and Physics of Solids, 50:5–32, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  • M.E. Gurtin. The burgers vector and the flow of screw and edge dislocations in finite-deformation single-crystal plasticity. Journal of the Mechanics and Physics of Solids, 54:1882–1898, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  • M.E. Gurtin. A finite deformation, gradient theory of single-crystal plasticity with free energy dependent on densities of geometrically necessary dislocations. International Journal of Plasticity, 24:702–725, 2008.

    Article  MATH  Google Scholar 

  • M.E. Gurtin and L. Anand. A gradient theory for single-crystal plasticity. Modelling and Simulation in Materials Science and Engineering, 15: S263–S270, 2007.

    Article  Google Scholar 

  • M.E. Gurtin and L. Anand. Thermodynamics applied to gradient theories involving the accumulated plastic strain: The theories of aifantis and fleck and hutchinson and their generalization. Journal of the Mechanics and Physics of Solids, 57:405–421, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  • C.-S. Han, H. Gao, Y. Huang, and W.D. Nix. Mechanism-based strain gradient crystal plasticityi. theory. Journal of the Mechanics and Physics of Solids, 53:1188–1203, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  • M.A. Haque and M.T.A. Saif. Strain gradient effect in nanoscale thin films. Acta Materialia, 51:30533061, 2003.

    Article  Google Scholar 

  • I. Hayashi, M. Sato, and M. Kuroda. Strain hardening in bent copper foils. Journal of the Mechanics and Physics of Solids, 59:1731–1751, 2011.

    Article  Google Scholar 

  • T.J.R. Hughes. Generalization of selective integration procedures to anisotropic and nonlinear media. International Journal for Numerical Methods in Engeering, 15:1413–1418, 1980.

    Article  MATH  Google Scholar 

  • S. Ikawa, M. Asano, M. Kuroda, and K. Yoshida. Effects of crystal orientation on bendability of aluminum alloy sheet. Materials Science and Engineering, A 528:40504054, 2011.

    Google Scholar 

  • D. Kiener, W. Grosinger, G. Dehm, and R. Pippan. A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples. Acta Materialia, 56:580–592, 2008.

    Article  Google Scholar 

  • E. Kröner. Allegmeine kontinuumstheorie der versetzungen und eigenspannungen. Arch. Rational Mech. Anal., 4:273–334, 1960.

    Article  MathSciNet  MATH  Google Scholar 

  • L.P. Kubin, G. Canova, M. Condat, B. Devincre, V. Pontikis, and Y. Brechet. Dislocation microstructures and plastic flow: a 3d simulation. Solid State Phenomena, 23-24::445–472, 1992.

    Article  Google Scholar 

  • M. Kuroda. On large-strain finite element solutions of higher-order gradient crystal plasticity. International Journal of Solids and Structures, 48: 3382–3394, 2011.

    Article  Google Scholar 

  • M. Kuroda and V. Tvergaard. Shear band development predicted by a non-normality theory of plasticity and comparison to crystal plasticity predictions. International Journal of Solids and Structures, 38:8945–8960, 2001.

    Article  MATH  Google Scholar 

  • M. Kuroda and V. Tvergaard. Studies of scale dependent crystal viscopalsticity models. Journal of the Mechanics and Physics of Solids, 54: 1789–1810, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Kuroda and V. Tvergaard. Effects of texture on shear band formation in plane strain tension/compression and bending. Internaitonal Journal of Plasticity, 23:244–272, 2007.

    Article  MATH  Google Scholar 

  • M. Kuroda and V. Tvergaard. On the formulations of higher-order strain gradient crystal plasticity. Journal of the Mechanics and Physics of Solids, 56:1591–1608, 2008 a.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Kuroda and V. Tvergaard. A finite deformation theory of higher-order gradient crystal plasticity. Journal of the Mechanics and Physics of Solids, 56:2573 2584, 2008 b.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Kuroda and V. Tvergaard. Effects of microscopic boundary conditions on plastic deformations of small-sized single crystals. International Journal of Solids and Structures, 46:4396–4408, 2009.

    Article  MATH  Google Scholar 

  • M. Kuroda and V. Tvergaard. An alternative treatment of phenomenological higher-order strain plasticity theory. International Journal of Plasticity, 26:507–515, 2010.

    Article  MATH  Google Scholar 

  • M. Kuroda, V. Tvergaard, and T.Ohashi. Simulations of micro-bending of thin foils using a scale dependent crystal plasticity model. Modelling and Simulation in Materials Science and Engineering, 15:S13–S22, 2007.

    Article  Google Scholar 

  • J.W. Kysar, Y. Saito, M.S. Oztop, D. Lee, and W.T. Huh. Experimental lower bounds on geometrically necessary dislocation density. International Journal of Plasticity, 26:1097–1123, 2010.

    Article  MATH  Google Scholar 

  • E.H. Lee. Elastic-plastic deformation at finite strains. Journal of Applied Mechanics, 36:1–6, 1969.

    Article  MATH  Google Scholar 

  • R.M. McMeeking and J.R. Rice. Finite-element formulations for problems of large elastic-plastic deformation international. Journal of Solids and Structures, 11:601–616, 1975.

    Article  MATH  Google Scholar 

  • C. Motz, T. Schöberl, and R. Pippan. Mechanical properties of micro-sized copper bending beams machined by the focused ion beam technique. Acta Materialia, 53:42694279, 2005.

    Article  Google Scholar 

  • H. Mughrabi. On the current understanding of strain gradient plasticity. Materials Science and Engineering, A 387-389:209–213, 2004.

    Article  Google Scholar 

  • E. Nakamachi, C.L. Xie, and M. Harimoto. Drawability assessment of bcc steel sheet by using elastic/crystalline viscoplastic finite element analyses. International Journal of Mechanical Sciences, 43:631–652, 2001.

    Article  MATH  Google Scholar 

  • J.F. Nye. Some geometrical relations in dislocated solids. Acta Metallurgica, 1:153–162, 1953.

    Article  Google Scholar 

  • T. Ohashi, editor. A new model of scale dependent crystal plasticity analysis, volume Solid mechanics and its applications vol. 115, 97-106 of Proceedings of IUTAM Symposium on Mesoscopic Dynamics in Fracture Process and Strength of Materials, Osaka, Japan,, 2004. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • T. Ohashi. Crystal plasticity analysis of dislocation emission from micro voids. International Journal of Plasticity, 21:2071–2088, 2005.

    Article  MATH  Google Scholar 

  • D. Peirce, R. J. Asaro, and A. Needleman. Material rate dependence and localized deformation in crystalline solids. Acta Metallurgica, 31:1951–1976, 1983.

    Article  Google Scholar 

  • P. Shrotriya, S.M. Allameh, J. Lou, T. Buchheit, and W.O. Soboyejo. On the measurement of the plasticity length scale parameter in liga nickel foils. Mechanics of Materials, 35:233243, 2003.

    Article  Google Scholar 

  • J.S. Stölken and A.G. Evans. A microbend test method for measuring the plasticity length scale. Acta Materialia, 45:5109–5115, 1998.

    Article  Google Scholar 

  • S. Sun, B.L. Adams, C.Q. Shet, S. Saigal, and W. King. Mesoscale investigation of the deformation field of an aluminum bicrystal. Scripta Materialia, 39:501–508, 1998.

    Article  Google Scholar 

  • S. Sun, B.L. Adams, and W. King. Observations of lattice curvature near the interface of a deformed aluminum bicrystal. Philosophical Magazine, A80:9–25, 2000.

    Google Scholar 

  • K. Suzuki, Y. Matsuki, K. Masaki, M. Sato, and M. Kuroda. Tensile and microbend tests of pure aluminum foils with different thicknesses. Materials Science and Engineering, A 513-514:77–82, 2009.

    Google Scholar 

  • G.I. Taylor. Plastic strain in metals. J. Inst. Metals, 62:307–325, 1938.

    Google Scholar 

  • M.D. Uchic, D.M. Dimiduk, J.N. Florando, and W.D. Nix. Sample dimensions influence strength and crystal plasticity. Science, 305:986–989, 2004.

    Article  Google Scholar 

  • W.D.Nix and H.J.Gao. Indentation size effects in crystalline materials: A law for strain gradient plasticity. Journal of Mechanics and Physics of Solids, 46:411–425, 1998.

    Article  MATH  Google Scholar 

  • J. Weertman. Anomalous work hardening, non-redundant screw dislocations in a circular bar deformed in torsion, and non-redundant edge dislocations in a bent foil. Acta Materialia, 50:673–689, 2002.

    Article  Google Scholar 

  • K. Yamagishi, R. Takeda, and M. Takeda. The influence of grain size on the flex fatigue property of rolled copper foil. Copper and Copper Alloys, 45:27–30, 2006. (in Japanese with English abstract).

    Google Scholar 

  • S. Yefimov, E. van der Giessen, and I. Groma. Bending of a single crystal: discrete dislocation and nonlocal crystal plasticity simulations. Modelling and Simulation in Materials Science and Engineering, 12:10691086, 2004 a.

    Article  Google Scholar 

  • S. Yefimov, I. Groma, and E. van der Giessen. A comparison of a statisticalmechanics based plasticity model with discrete dislocation plasticity calculations. Journal of the Mechanics and Physics of Solids, 52:279–300, 2004 b.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 CISM, Udine

About this chapter

Cite this chapter

Kuroda, M. (2014). On scale-dependent crystal plasticity models. In: Schröder, J., Hackl, K. (eds) Plasticity and Beyond. CISM International Centre for Mechanical Sciences, vol 550. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1625-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1625-8_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1624-1

  • Online ISBN: 978-3-7091-1625-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics