Skip to main content

Exploration of Microorganisms Producing Bioactive Molecules of Industrial Interest by Solid State Fermentation

  • Conference paper
  • First Online:
Food Quality, Safety and Technology

Abstract

The prospect of biomolecules using microorganisms in fermentation processes is widely used, in this context to solid state fermentation (SSF) has advantages such as the possibility of using agricultural and industrial waste and reduction of water waste. Studies show that different microorganisms can be used in SSF; actinomyces and fungi are the most used due to growth in media with low water activity. Among the highlight biomolecules produced are antibiotics, anticarcinogenic agents, anticoccidians, antiviral, neuroactive, antioxidants, and enzymes. The enzymes are produced in greater scale among the different classes; hydrolases have gained importance because of cellulases, hemicellulases, proteases, chitinases, lipases, and phytases. Cellulases are a complex capable of acting on cellulosic materials, promoting its hydrolysis to release sugars, of which glucose is the one with largest industrial interest. Xylanolytic enzymes act on xylan, hemicellulose components, which may be attached to the cellulose and lignin in the plant cell wall. The study of chitinase has been stimulated by their possible involvement as agents of defense against pathogenic organisms that contain chitin, such as insects, nematodes, and fungi. Proteases catalyze the hydrolysis of peptide bonds of proteins and may have activity on ester and amide bonds. Lipases allow catalysis of the hydrolysis and synthesis, often in chemo, regal, or enantioselective reactions. Furthermore, phytase catalyzes the hydrolysis of phytate to phosphate and inorganic phosphorus, increasing the bioavailability of phosphorus for monogastric animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramic M, Lescic I, Korica T et al (1999) Purification and properties of extracellular lipase from Streptomyces rimosus. Enzyme Microb Technol 25:522–529

    Article  CAS  Google Scholar 

  • Adinarayana G, Venkateshan MR, Bpiraju VV et al (2006) Cytotoxic compounds from the marine actinobacterium. Bioorg Khim 32:328–334

    CAS  Google Scholar 

  • Anderson AS, Wellington EMH (2001) The taxonomy of Streptomyces and related genera. Int J Syst Bacteriol 51:797–814

    Article  CAS  Google Scholar 

  • Barros M, Fleuri LF, Macedo GA (2010) Seed lipases: sources, applications and properties – a review. Braz J Chem Eng 27:15–29

    Article  CAS  Google Scholar 

  • Beg QK, Brushan B, Kapoor M et al (2000) Production and characterization of thermostable xylanase and pectinase from Streptomyces sp. QG-11-3. J Ind Microbiol Biotechnol 24:396–402

    Article  CAS  Google Scholar 

  • Beg QK, Kapoor M, Mahajan L et al (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338

    Article  CAS  Google Scholar 

  • Bielen A, Cetkovic H, Long PF et al (2009) The SGNH-hydrolase of Streptomyces coelicolor has (aryl) esterase and a true lipase activity. Biochimie 91:390–400

    Article  CAS  Google Scholar 

  • Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26

    Article  CAS  Google Scholar 

  • Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    Article  CAS  Google Scholar 

  • Bhattacharya SS, Banerjee R (2008) Laccase mediated biodegradation of 2,4-dichlorophenol using response surface methodology. Chemosphere 73:81–85

    Article  CAS  Google Scholar 

  • Born GVR (1952) The extracellular bacteriolytic enzymes of a species of Streptomyces. J Gen Microbiol 6:344–351

    Article  CAS  Google Scholar 

  • Brienzo M, Arantes V, Milagres AMF (2008) Enzymology of the thermophilic ascomycetous fungus Thermoascus aurantiacus. Fungal Biol Rev 22:120–130

    Article  Google Scholar 

  • Brzezinska MS, Jankiewicz U, Lisiecki K (2012) Optimization of cultural conditions for the production of antifungal chitinase by Streptomyces sporovirgulis. Appl Biochem Microbiol 49:154–159

    Article  Google Scholar 

  • Bull AT (2004) Microbial diversity and bioprospecting. ASM, Washington, DC

    Google Scholar 

  • Cabaleiro DR, Couto SR, Sanromán A et al (2002) Comparison between the protease production ability of ligninolytic fungi cultivated in solid state media. Process Biochem 37:1017–1023

    Article  CAS  Google Scholar 

  • Chandra M, Kalra A, Sangwan NS et al (2009) Development of a mutant of Trichoderma citrinoviride for enhanced production of cellulases. Bioresour Technol 100:1659–1662

    Article  CAS  Google Scholar 

  • Chandra M, Kalra A, Sharma PK et al (2010) Optimization of cellulases production by Trichoderma citrinoviride on marc of Artemisia annua and its application for bioconversion process. Biomass Bioenergy 34:805–811

    Article  CAS  Google Scholar 

  • Chihara G (1992) Immunopharmacology of lentinan, a polysaccharide isolated from lentinus edodes: its application as a host defense potentiator. Int J Orient Med 17:57–77

    Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  CAS  Google Scholar 

  • Costa SA, Pessoa AJ, Roberto IC (2000) Partitioning of xylanolitic comples from Penicillium janthinellum by na aqueous two-phase system. J Chromatogr 743:339–348

    Article  CAS  Google Scholar 

  • Cöte A, Shareck F (2008) Cloning, purification and characterization of two lipases from Streptomyces coelicolor A3(2). Enzyme Microb Technol 42:381–388

    Article  Google Scholar 

  • De Azeredo LAI, Freire DMG, Soares RMA et al (2004) Production and partial characterization of thermophilic proteases from Streptomyces sp. isolated from Brazilian cerrado soil. Enzyme Microb Technol 34:354–358

    Article  Google Scholar 

  • Deng W, Jiang ZQ, Li LT et al (2005) Variation of xylanosomal subunit composition of Streptomyces olivaceoviridis by nitrogen sources. Biotechnol Lett 27:429–433

    Article  CAS  Google Scholar 

  • Diaz JCM, Rodríguez JA, Roussos S et al (2006) Lipase from the thermotolerant fungus Rhizopus homothallicus is more thermostable when produced using solid state fermentation than liquid fermentation procedures. Enzyme Microb Technol 39:1042–1050

    Article  Google Scholar 

  • Duarte K, Santos TAPR, Freitas AC et al (2012) Analytical techniques for discovery of bioactive compounds from marine fungi. Trends Anal Chem 34:97–121

    Article  CAS  Google Scholar 

  • D’Souza-Ticlo D, Sharma D, Raghukumar C (2010) A thermostable metal-tolerant laccase with bioremediation potential from a marine-derived fungus. Mar Biotechnol 11:725–737

    Article  Google Scholar 

  • Fleuri LF, Lima GPP (2013) Capítulo 12—Polissacarídeos: Obtenção e Aplicação na Indústria de Alimentos. In: Pastore G, Maróstica M, Bicas J (Org.) Biotecnologia de Alimentos da série Ciência, Tecnologia, Engenharia de Alimentos e Nutrição, vol 12, 1st edn. Atheneu, São Paulo, pp 297–317

    Google Scholar 

  • Fleuri LF, Kawaguti HY, Sato HH (2009a) Production, purification and application of extracellular chitinase from Cellulosimicrobium cellulans 191. Braz J Microbiol 40:623–630

    Article  CAS  Google Scholar 

  • Fleuri LF, Sato HH, Garcia JS et al (2009b) Elucidação parcial da estrutura de aminoglucanooligossacarídeos (AGOs) produzidos enzimaticamente. Polímeros 19:111–116

    Article  CAS  Google Scholar 

  • Fransson AM, Valeur I, Wallander H (2004) The wood-decaying fungus Hygrophoropsis aurantiaca increases P availability in acid forest humus soil, while N addition hampers this effect. Soil Biol Biochem 36:1699–1705

    Article  CAS  Google Scholar 

  • Freire GDM, Castilho FL (2008) Lipases em Biocatálise. In: Bon EPS et al (eds) Enzimas em biotecnologia: Produção, aplicação e mercado. Interciência, Rio de Janeiro, p 369

    Google Scholar 

  • García CP, CarreÑo FLG, Zaragoza ES (2000) Digestive proteases in juvenile Mexican green abalone, Haliotis fulgens. Aquaculture 181:157–170

    Article  Google Scholar 

  • George SP, Ahmad A, Rao MB (2001) Studies on carboxymethyl cellulase produced by an alkalothermophilic actinomycete. Bioresour Technol 77:171–175

    Article  CAS  Google Scholar 

  • Gushterova A, Vasileva-Tonkova E, Dimova E et al (2005) Keratinase production by newly isolated antartic actinomicete strains. World J Microbiol Biotechnol 21:831–834

    Article  CAS  Google Scholar 

  • Hahn-Hägerdal B, Gorwa-Grauslund MF, Lidén G, Zacchi G (2006) Bio-ethanol – the fuel of tomorrow from the residues of today. Trends Biotechnol 24:549–556

    Article  Google Scholar 

  • Han Y, Li Z, Miao X et al (2008) Statistical optimization of medium components to improve the chitinase activity of Streptomyces sp. Da11 associated with the South China Sea sponge Craniella australiensis. Process Biochem 43:1088–1093

    Article  CAS  Google Scholar 

  • Hasan F, Shah AA, Hameed A (2006) Industrial applications of microbial lipases. Enzyme Microb Technol 39:235

    Article  CAS  Google Scholar 

  • Hawksworth DL, Kirk PM, Sutton BC et al (1996) The dictionary of fungi of Ainsworth & Bisby. Cab International, Oxon

    Google Scholar 

  • Hikino H, Mizuno T, Oshima Y, Konno C (1985) Isolation and hypoglycemic activity of moran A, a glycoprotein of Morus alba root barks. Planta Med 51:159–160

    Article  Google Scholar 

  • Jang HD, Chen KS (2003) Productions and characterization of thermostable cellulases from Streptomyces transformant T3-1. World J Microbiol Biotechnol 19:263–268

    Article  CAS  Google Scholar 

  • Kies AK, Van Hemert KHF, Sauer WC (2001) Effect of phytase on protein and amino acid digestibility and energy utilization. World Poult Sci J 57:109–125

    Article  Google Scholar 

  • Kim S, Lee KJ (1996) Trypsin-like protease of Streptomyces exfoliatus SMFl3, a potential agent in mycelia differentiation. Microbiology 142:1797–1806

    Article  CAS  Google Scholar 

  • Klein DA, Paschke MW (2004) Filamentous fungi: the indeterminate lifestyle and microbial ecology. Microb Ecol 47:224–235

    CAS  Google Scholar 

  • Korn-Wendisch F, Scheider J (1992) The family Streptomycetaceae. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes. Springer, New York, pp 921–995

    Google Scholar 

  • Landau NS, Egorov NS (1996) Proteolytic enzymes of Nocardia minima: accumulation in the medium and some properties. Microbiology 65:36–40

    Google Scholar 

  • Lee HS, Ohnioshi Y, Horinouchi S (2001) AσB-like factor responsible for carotenoid biosynthesis in Streptomyces griseus. J Mol Microbiol Biotechnol 3:95–101

    CAS  Google Scholar 

  • Lei XG, Stahl CH (2000) Nutritional benefits of phytase and dietary determinants of its efficacy. J Appl Anim Res 17:97–112

    Article  CAS  Google Scholar 

  • Lever M, Ho G, Cord-Ruwisch R (2010) Ethanol from lignocellulose using crude unprocessed cellulose from solid-state fermentation. Bioresour Technol 101:7083–7087

    Article  CAS  Google Scholar 

  • Li A, Piel J (2002) A gene cluster from a marine streptomyces encoding the biosynthesis of the Aromatic spiroketal polyketide griseorhodin A. Chem Biol 9:1017–1026

    Article  CAS  Google Scholar 

  • Lima VMG, Krieger N, Sarquis MIM et al (2003) Effect of nitrogen and carbon sources on lipase production by Penicillium aurantiogriseum. Food Technol Biotechnol 41:105–110

    CAS  Google Scholar 

  • Lima ALG, Nascimento RP, Bon EPS et al (2005) Streptomyces drozdowiczii cellulase production using agro-industrial by-products and its potential use in the detergent and textile industries. Enzyme Microb Technol 37:272–277

    Article  Google Scholar 

  • Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642

    Article  CAS  Google Scholar 

  • Macherla VR, Liu J, Bellows C et al (2005) Glaciapyrroles A, B and C pyrrolosesquiterpenes from a Streptomyces sp. isolated from an Alaskan marine sediment. J Nat Prod 3:95–101

    Google Scholar 

  • MacLean HL, Spatari S (2009) The contribution of enzymes and process chemicals to the life cycle of ethanol. Environ Res Lett 4:1–11

    Google Scholar 

  • Mander P, Cho SS, Simkhada JR et al (2012) An organic solvent–tolerantlipase from Streptomyces sp. CS133 for enzymatic transesterification of vegetable oils in organic media. Process Biochem 47:635–642

    Article  CAS  Google Scholar 

  • Mann J (2001) Natural products as immunosuppressive agents. Nat Prod Rep 18:417–430

    Article  CAS  Google Scholar 

  • Maskey RP, Helmke E, Kayser O et al (2004) Anticancer and antibacterial trioxacarcins with high anti-malaria activity from a marine Streptomycete and their absolute stereochemistry. J Antibiot (Tokyo) 57:771–779

    Article  CAS  Google Scholar 

  • Meenupriya J, Thangaraj M (2011) Analytical characterization and structure elucidation of metabolites from Aspergillus ochraceus MP2 fungi. Asian Pac J Trop Biomed 1:376–380

    Article  CAS  Google Scholar 

  • Merzendorfer H, Zimoch L (2003) Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. J Exp Biol 206:665–671

    Google Scholar 

  • Miles PG, Chang ST (1997) Mushroom biology. World Scientific, London

    Book  Google Scholar 

  • Miller ED, Kauffman CA, Jensen PR et al (2007) Piperazimycins cytotoxic hexadepsipeptides from a marine derived bacterium of the genus Streptomyces. J Org Chem 72:323–330

    Article  CAS  Google Scholar 

  • Mishima D, Tateda M, Ike M et al (2006) Comparative study on chemical pretreatments to accelerate enzymatic hydrolysis of aquatic macrophyte biomass used in water purification processes. Bioresour Technol 97:2166–2172

    Article  CAS  Google Scholar 

  • Mizuno T, Inagaki R, Kanao T et al (1990) Antitumor activity and some properties of water-insoluble hetero-glycans from “Himematsutake”, the fruiting body of Agaricus blazei Murill. Agric Biol Chem 54:2897–2905

    Article  CAS  Google Scholar 

  • Moore BS, Trischman JA, Seng D et al (1999) Salinamides, anti-inflammatory depsipeptides from a marine Streptomyces. J Org Chem 64:1145–1150

    Article  CAS  Google Scholar 

  • Nascimento RP, Marques S, Alves L et al (2003) A novel strain of Streptomyces malaysiensis isolated from Brazilian soil produces high endo-β-1,4-xylanase. World J Microbiol Biotechnol 19:879–881

    Article  Google Scholar 

  • Okami Y, Hotta K (1988) Search and discovery of new antibiotics. In: Goodfellow M, Williams ST, Mordarski M (eds) Actinomycetes in biotechnology. Academic, London, pp 33–67

    Chapter  Google Scholar 

  • Olano C, Mendez C, Salas JA (2009) Antitumour compounds from marine actinomycetes. Mar Drugs 7:210–248

    Article  CAS  Google Scholar 

  • Renner MK, Shen YC, Cheng XC et al (1999) Cyclomarins A-C, new anti-inflammatory cyclic peptides produced by a marine bacterium (Streptomyces sp.). J Am Chem Soc 121:11273–11276

    Article  CAS  Google Scholar 

  • Rojas JA, Cruz C, Mika JF et al (2009) Isoenzyme characterization of proteases and amylases and partial purification of proteases from filamentous fungi causing biodeterioration of industrial paper. Int Biodeter Biodegr 63:169–175

    Article  CAS  Google Scholar 

  • Romdhane IBB, Fendrib A, Gargourib Y et al (2010) A novel thermoactive and alkaline lipase from Talaromyces thermophilus fungus for use in laundry detergents. Biochem Eng J 53:112–120

    Article  Google Scholar 

  • Salmon V, Derenne S, Lallier-Verge E et al (2003) Origin of compositional differences in organic matter abundance and oil potential of cherty and clayey Cenomanian black levels in the Umbria-Marche basin (Italy). Org Geochem 34:1237–1245

    Article  CAS  Google Scholar 

  • Saha BC (2003) Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30:279–291

    Article  CAS  Google Scholar 

  • Sahai AS, Manocha MS (1993) Chitinases of fungi and plants: their involvement in morphogenesis and host-parasite interaction. FEMS Microbiol Rev 11:317–338

    Article  CAS  Google Scholar 

  • Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization, and applications of lipases. Biotechnol Adv 19:627

    Article  CAS  Google Scholar 

  • Silva TM, Maller A, Damásio ARL et al (2008) Properties of a purified thermostable glucoamylase from Aspergillus nievus. J Ind Microbiol Biotechnol 36:1439–1446

    Article  Google Scholar 

  • Soccol CR, Vandenberghe LPS, Medeiros ABP et al (2010) Bioethanol from lignocelluloses: status and perspectives in Brazil. Bioresour Technol 101:4820–4825

    Article  CAS  Google Scholar 

  • Soni SK, Batra N, Bansal N et al (2010) Bioconversion of sugarcane bagasse into second generation bioethanol after enzymatic hydrolysis with in-house produced cellulases from Aspergillus sp S4B2F. Bioresources 5:741–758

    CAS  Google Scholar 

  • Stackebrandt SP (2000) The prokaryotes: an evolving electronic resource for the microbiological community. Springer, New York

    Google Scholar 

  • Stackebrandt E, Rainey FA, Ward-Raine NL (1997) Proposalfor a new hierarchic classification system. Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491

    Article  Google Scholar 

  • Strohl WR (2004) Antimicrobials. In: Bull AT (ed) Microbial diversity and bioprospecting. ASM, Washington, DC, pp 336–355

    Google Scholar 

  • Sukumaran SK, Singhania RR, Mathew GM et al (2009) Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renew Energy 34:421–424

    Article  CAS  Google Scholar 

  • Sunna A, Antranikian G (1997) Xylanolytic enzymes from fungi and bacteria. Crit Rev Biotechnol 17:39–67

    Article  CAS  Google Scholar 

  • Tikhonov VE, Radigina LA, Yamskov IA et al (1998) Affinity purification of major chitinases produced by Streptomyces kurssanovii. Enzyme Microb Technol 22:82–85

    Article  CAS  Google Scholar 

  • Xiong H, Qi S, Xu Y et al (2009) Antibiotic and antifouling compound production by the marine-derived fungus Cladosporium sp. F14. J Hydro Environ Res 2:264–270

    Article  Google Scholar 

  • Zanin GM, Santana CC, Bom EPS et al (2000) Brazilian bioethanol program. Appl Biochem Biotechnol 84–86:1147

    Article  Google Scholar 

  • Zanphorlin LM, Cabralb H, Arantesb E et al (2011) Purification and characterization of a new alkaline serine protease from the thermophilic fungus Myceliophthora sp. Process Biochem 46:2137–2143

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Francisco Fleuri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this paper

Cite this paper

Fleuri, L.F. et al. (2013). Exploration of Microorganisms Producing Bioactive Molecules of Industrial Interest by Solid State Fermentation. In: Lima, G., Vianello, F. (eds) Food Quality, Safety and Technology. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1640-1_10

Download citation

Publish with us

Policies and ethics