Skip to main content

Ontogenetic Development of Sound Communication in Fishes

  • Chapter
  • First Online:
Sound Communication in Fishes

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 4))

Abstract

Investigating the potential ability of juvenile fishes to communicate acoustically requires analysing the development of vocalization and hearing . To date, the ontogeny of both processes has been examined in three non-related species, namely the croaking gourami Trichopsis vittata (family Osphronemidae , order Perciformes), the squeaker catfish Synodontis schoutedeni (family Mochokidae , order Siluriformes) and the Lusitanian toadfish Halobatrachus didactylus (family Batrachoididae , order Batrachoidiformes). Juveniles of all three species vocalized during agonistic behaviour and showed similar changes in sound characteristics despite possessing different sonic mechanisms. With growth, dominant frequencies decreased, whereas sound pressure levels, pulse periods and sound duration (except in the toadfish) increased. Generally, hearing sensitivities improved during development, but differences were observed between species. Croaking gouramis of all stages responded to sounds up to 5 kHz. Auditory sensitivity increased in the high frequency range and the best hearing frequency shifted from 2.5 to 1.5 kHz. In the squeaker catfish, hearing abilities increased up to 2 kHz but showed a decrease at 5 and 6 kHz. The Lusitanian toadfish showed the smallest changes of all three species: the best hearing sensitivity was found at 50 Hz in all stages and hearing improved only at some frequencies. A comparison between audiograms and sound spectra within same-sized fish of the respective species revealed that the main energies of sounds were concentrated within the most sensitive frequencies. The comparison also showed that early-stage gouramis and toadfish probably cannot detect conspecific sounds due to low sound levels and high hearing thresholds . Only the catfish is able to communicate acoustically at all stages of development, most likely due to its Weberian apparatus .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alderks PW, Sisneros JA (2011) Ontogeny of auditory saccular sensitivity in the plainfin midshipman fish, Porichthys notatus. J Comp Physiol A 197:387–398

    Article  Google Scholar 

  • Amorim MCP, Hawkins AD (2005) Ontogeny of acoustic and feeding behaviour in the grey gurnard, Eutrigla gurnardus. Ethology 111:255–269

    Article  Google Scholar 

  • Belanger AJ, Bobeica I, Higgs DM (2010) The effect of stimulus type and background noise on hearing abilities of the round goby Neogobius melanostomus. J Fish Biol 77:1488–1504

    Article  CAS  PubMed  Google Scholar 

  • Bertucci F, Scaion D, Beauchaud M, Attia J, Mathevon N (2012) Ontogenesis of agonistic vocalizations in the cichlid fish Metriaclima zebra. C R Biol 335:529–534

    Google Scholar 

  • Bradbury JW, Vehrencamp SL (1998) Principles of Animal Communication. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Bradbury JW, Vehrencamp SL (2011) Principles of Animal Communication, 2nd edn. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Egner SA, Mann DA (2005) Auditory sensitivity of sergeant major damselfish Abudefduf saxatilis from post-settlement juvenile to adult. Mar Ecol Progr Ser 285:213–222

    Article  Google Scholar 

  • Henglmüller SM, Ladich F (1999) Development of agonistic behaviour and vocalization in croaking gourami. J Fish Biol 54:380–395

    Article  Google Scholar 

  • Higgs DM, Souza MJ, Wilkins HR, Presson JC, Popper AN (2001) Age- and size related changes in the inner ear and hearing ability of the adult zebrafish (Danio rerio). J Assoc Res Otolaryngol 3:174–184

    Article  PubMed Central  Google Scholar 

  • Higgs DM, Rollo AK, Souza MJ, Popper AN (2003) Development of form and function in peripheral auditory structures of the zebrafish (Danio rerio). J Acoust Soc Am 113:1145–1154

    Article  PubMed  Google Scholar 

  • Higgs DM, Plachta DTT, Rollo AK, Singheiser M, Hastings MC, Popper AN (2004) Development of ultrasound detection in American shad (Alosa sapidissima). J Exp Biol 207:155–163

    Article  CAS  PubMed  Google Scholar 

  • Iwashita A, Sakamoto M, Kojima T, Watanabe Y, Soeda H (1999) Growth effects on the auditory threshold of red sea bream. Nippon Suisan Gakkaishi 65:833–838

    Article  Google Scholar 

  • Kenyon TN (1996) Ontogenetic changes in the auditory sensitivity of damselfishes (Pomacentridae). J Comp Physiol A 179:553–561

    Google Scholar 

  • Kéver L, Boyle KS, Dragičević B, Dulčić J, Casadevall M et al (2012) Sexual dimorphism of sonic apparatus and extreme intersexual variation of sounds in Ophidion rochei (Ophidiidae): first evidence of a tight relationship between morphology and sound characteristics in Ophidiidae. Front Zool 9:34

    Article  PubMed Central  PubMed  Google Scholar 

  • Ladich F (1991) Fische schweigen nicht—Lautbildung, Hören und akustische Kommunikation bei Fischen. Naturwiss Rdsch 44:379–384

    Google Scholar 

  • Ladich F (1997) Agonistic behavior and significance of sounds in vocalizing fish. Mar Freshw Behav Physiol 29:87–108

    Article  Google Scholar 

  • Ladich F (2014) Diversity in hearing in fishes: ecoacoustical, communicative, and developmental constraints. In: Köppl C, Manley GA, Popper AN, Fay RR (eds) Insights from comparative hearing. SHAR, vol 49. Springer, New York, pp 289–321

    Google Scholar 

  • Ladich F, Fay RR (2013) Auditory evoked potential audiometry in fish. Rev Fish Biol Fish 23:317–364

    Article  Google Scholar 

  • Ladich F, Fine ML (2006) Sound-generating mechanisms in fishes: a unique diversity in vertebrates. In: Ladich F, Collin SP, Moller P, Kapoor BG (eds) Communication in Fishes. Science Publishers, Enfield, NH, pp 3-43

    Google Scholar 

  • Ladich F, Myrberg AA (2006) Agonistic behaviour and acoustic communication. In: Ladich F, Collin SP, Moller P, Kapoor BG (eds) Communication in fishes. Science Publishers, Enfield, pp 122–148

    Google Scholar 

  • Ladich F, Yan HY (1998) Correlation between auditory sensitivity and vocalization in anabantoid fishes. J Comp Physiol A 182:737–746

    Article  CAS  PubMed  Google Scholar 

  • Ladich F, Collin SP, Moller P, Kapoor BG (eds) (2006) Communication in fishes. vol. 1. Science Publishers, Enfield

    Google Scholar 

  • Lechner W, Wysocki LE, Ladich F (2010) Ontogenetic development of auditory sensitivity and sound production in the squeaker catfish Synodontis schoutedeni. BMC Biol 8:10

    Article  PubMed Central  PubMed  Google Scholar 

  • Lechner W, Heiss E, Schwaha T, Glösmann M, Ladich F (2011) Ontogenetic development of Weberian ossicles and hearing abilities in the African bullhead catfish. PLoS ONE 6(4):e18511

    Article  CAS  Google Scholar 

  • Lu J, DeSmidt AA (2013) Early development of hearing in zebrafish. J Assoc Res Otolaryngol 14:509–521

    Article  PubMed Central  PubMed  Google Scholar 

  • McGregor PK (1992) Playback and studies of animal communication. Plenum Press, New York

    Book  Google Scholar 

  • McKibben JR, Bass AH (1998) Behavioral assessment of acoustic parameters relevant to signal recognition and preference in a vocal fish. J Acoust Soc Am 104:3520–3533

    Article  CAS  PubMed  Google Scholar 

  • Myrberg AA (1981) Sound communication and interception in fishes. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, New York, pp 395–426

    Chapter  Google Scholar 

  • Myrberg AA, Mohler M, Catala JD (1986) Sound production by males of a coral reef fish (Pomacentrus partitus): its significance to females. Anim Behav 34:913–923

    Article  Google Scholar 

  • Popper AN (1971) The effects of size on auditory capacities of the goldfish. J Audit Res 11:239–247

    Google Scholar 

  • Schneider H (1941) Die Bedeutung der Atemhöhle der Labyrinthfische für ihr Hörvermögen. Z vergl Physiol 29:172–194

    Article  Google Scholar 

  • Schneider H (1964) Physiologische und morphologische Untersuchungen zur Bioakustik der Tigerfische (Pisces, Theraponidae). Z vergl Physiol 47:493–558

    Article  Google Scholar 

  • Sisneros JA, Bass AH (2005) Ontogenetic changes in the response properties of individual, primary auditory afferents in the vocal plainfin midshipman Porichthys notatus. J Exp Biol 208:3121–3131

    Article  PubMed  Google Scholar 

  • Vasconcelos RO, Ladich F (2008) Development of vocalization, auditory sensitivity and acoustic communication in the Lusitanian toadfish Halobatrachus didactylus. J Exp Biol 211:502–509

    Article  PubMed  Google Scholar 

  • Vierke J (1978) Labyrinthfische und verwandte Arten Wuppertal-Elberfeld. Engelbert Pfriem, Verlag

    Google Scholar 

  • Webb JF, Walsh RM, Casper BM, Mann DA, Kelly N, Cicchino N (2012) Development of the ear, hearing capabilities and laterophysic connection in the spotfin butterflyfish (Chaetodon ocellatus). Environ Biol Fishes 95:275–290

    Article  Google Scholar 

  • Wright KJ, Higgs DM, Leis JM (2011) Ontogenetic and interspecific variation in hearing ability in marine fish larvae. Mar Ecol Progr Ser 424:1–13

    Article  Google Scholar 

  • Wysocki LE, Ladich F (2001) The ontogenetic development of auditory sensitivity, vocalization and acoustic communication in the labyrinth fish Trichopsis vittata. J Comp Physiol A 187:177–187

    Article  CAS  PubMed  Google Scholar 

  • Yan HY (1998) Auditory role of the suprabranchial chamber in gourami fish. J Comp Physiol A 183:325–333

    Article  CAS  PubMed  Google Scholar 

  • Zeddies DG, Fay RR (2005) Development of the acoustically evoked behavioural response in zebra fish to pure tones. J Exp Biol 208:1343–1372

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Ladich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Ladich, F. (2015). Ontogenetic Development of Sound Communication in Fishes. In: Ladich, F. (eds) Sound Communication in Fishes. Animal Signals and Communication, vol 4. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1846-7_4

Download citation

Publish with us

Policies and ethics