Skip to main content

Physical and Mathematical Models of Nonlinear Waves in Solids

  • Chapter
Nonlinear Waves in Solids

Part of the book series: CISM Courses and Lectures ((CISM,volume 341))

Abstract

In a first part (Sections 1 to 4), continuum and discrete (lattice) models of solids such as in elasticity and anelasticity are introduced with special attention paid to nonlinearity and dispersion. This is extended to solids with a microstructure of mechanical or electromagnetic origin. The second part (Sections 5 to 7) exemplifies models and properties of nonlinear-wave problems with an emphasis on solitary waves and soli-tons. Both exactly integrable and nearly integrable systems are considered. Systems governed by sine-Gordon, Boussinesq, Korteweg-de Vries, nonlinear Schrödinger and Zakharov equations or systems belong to the first class. Generalized Boussinesq, Zakharov and sine-Gordon-d’Alembert systems belong to the second class. The main properties of such systems are illustrated by computer-generated figures. Energy and pseudomomentum balances are presented as useful tools in such studies. Solitonic and dissipative structures are discriminated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Engelbrecht, J.: Nonlinear Wave Processes of Deformation in Solids, Pitman, London 1983.

    Google Scholar 

  2. Eringen, A.C. and Maugin, G.A.: Electrodynamics of Continua, Vol.I and II, Springer-Verlag, New York 1990.

    Google Scholar 

  3. Eringen, A.C. and Suhubi, E.S.: Elastodynamics, Vol. I, Academic Press, New York 1975.

    Google Scholar 

  4. Maugin, G.A.: Nonlinear Electromechanical Effects and Applications - A Series of Lectures, World Scientific, Singapore 1985.

    Google Scholar 

  5. Maugin, G.A.: Continuum Mechanics of Electromagnetic Solids, North-Holland, Amsterdam 1988.

    Google Scholar 

  6. Maugin, G.A.:The Thermomechanics of Plasticity and Fracture, Cambridge University Press, U.K. 1992.

    Google Scholar 

  7. Maugin, G.A.: Material Inhomogeneities in Elasticity, Chapman and Hall, London 1993.

    Google Scholar 

  8. Maugin, G.A. and Trimarco, C.: Pseudomomentum and material forces in nonlinear elasticity: variational formulations and applications to brittle fracture, Acta Mechanica, 94 (1992), 1–28.

    Google Scholar 

  9. Maugin, G.A.: The principle of virtual power in continuum mechanics: Application to coupled fields, Acta Mechanica, 35 (1980), 1–70.

    Google Scholar 

  10. Maugin, G.A., Pouget, J., Drouot, R. and Collet B.: Nonlinear Electromechanical Couplings, J.Wiley, Chichester and New York 1992.

    Google Scholar 

  11. Bui, H.D.: Introduction aux Problèmes Inverses en Mécanique des Matériaux, Eyrolles, Paris 1993.

    Google Scholar 

  12. Maugin, G.A. and Muschik, W.: Thermodynamics with internal variables-I General concepts, II-Applications, J.Non-Equilibr.Thermodynam., 18 (1993)

    Google Scholar 

  13. Maugin, G.A.: Internal variables and dissipative structures, J.Non-Equilibr.Thermodynam., 15 (1990) 173–192.

    Google Scholar 

  14. Askar, A.: Lattice Dynamical Foundations of Continuum Theories, World Scientific, Singapore 1986.

    Google Scholar 

  15. Kosevich, A.M.: Theory of Crystal Lattices (in Russian), Vishtsha Shkola, Kiev 1988.

    Google Scholar 

  16. Kunin, I.A.: Elastic Media with Microstructure: One-Dimensional Models, Springer-Verlag, Berlin 1982.

    Google Scholar 

  17. Mindlin, R.D.: Elasticity, piezoelectricity and crystal lattice dynamics, J.Elasticity, 2 (1972), 217–282.

    Google Scholar 

  18. Askar A.: A model for coupled rotation-displacement modes of certain molecular crystals. Illustration for KNO, J.Phys.Chem.Solids, 34 (1973), 1901–1907.

    CAS  Google Scholar 

  19. Pouget, J., Askar, A. and Maugin, G.A.: Lattice model for elastic ferroelectric crystals:Microscopic Approach, Phys.Rev., 33 (1986), 6304–6319.

    CAS  Google Scholar 

  20. Pouget, J. Askar, A. and Maugin, G.A.: Latice model for elastic ferroelectric crystals: Continuum approximation, Phys.Rev., 33 (1986), 6320–6325.

    CAS  Google Scholar 

  21. Maugin, G.A. and Pouget, J.: Electroacoustic equations for one-domain ferroelectric bodies, J.Acoust.Soc.Amer., 68, (1980), 575–587.

    Google Scholar 

  22. Erofeev, V.I. and Potarov A.I.: Nonlinear wave processes in elastic media with microstructurg, in: Nonlinear World, pp. 1197–1215, Proc.Phys., Kiev 1990.

    Google Scholar 

  23. Pouget, J. and Maugin G.A.: Nonlinear dynamics of oriented elastic solids-I, II, J.Elasticity, 22 (1989), 135–155, 157–183.

    Google Scholar 

  24. Maugin, G.A. and Pouget, J.: Solitons in microstructured elastic media–Physical and mechanical models, in: Continuum Models of Discrete Systems (5), ed. A.J.M. Spencer, pp. 115–137, Bakema, Rotterdam 1987.

    Google Scholar 

  25. Maradudin, A.A., Montroll, B.W., Weiss, G.H.,and Ipatova I.P.: Theory of Lattice Dynamics in the Harmonic Approximation, Academic Press, New York 1971.

    Google Scholar 

  26. Weiner, J.H.: Statistical Mechanics of Elasticity, J.Wiley-Interscience, New York 1983.

    Google Scholar 

  27. Jeffrey, A. and Kawahara, T.: Asymptotic Methods in Nonlinear Wave Theory, Pitman, Boston 1982.

    Google Scholar 

  28. Cadet, S.: Dynamique non linéaire des réseaux atomiques: solitons transversaux et couplage avec les mouvements longitudinaux, Doct. Thesis in Physics, Univ. de Bourgogne, Dijon, France 1987.

    Google Scholar 

  29. Flytzanis, N., Pnevmatikos, St. and Remoissenet, M.: Kink, breather and asymmetric envelope or dark solitons in nonlinear chains: I.Monoatomic chain, J.Phys.C: Solid State Phys., 18 (1985), 4603–4629.

    CAS  Google Scholar 

  30. Pnveumatikos, St.: Solitons in nonlinear atomic chains, in: Singularities and Dynamical Systems, ed. S.N.Pnevmatikos, pp. 397–437, Elsevier, Amsterdam 1985.

    Google Scholar 

  31. Gorbacheva, O.B. and Ostrovsky, L.A.: Nonlinear vector waves in a mechanical model of molecular chain, Physica, 8 (1983), 223.

    Google Scholar 

  32. Collet,B. and Pouget, J.: Propagation d’ondes acoustiques dans les réseaux cristallins anharmoniques, Acustica, 63 (1987), 265–275.

    Google Scholar 

  33. Maugin, G.A.: Solitons in elastic crystals exhibiting phase transitions, in: Nonclassical continuum mechanics: Abstract Techniques and Applications, Eds. R.Knops and A.A.Lacey, pp. 272–283, Cambridge University Press, U.K. 1987.

    Google Scholar 

  34. Pouget, J.: Nonlinear dynamics of lattice models for elastic continua, in:Physical properties and thermodynamical behaviour of minerals, ed. K.Saljé, pp.359–402, Reidel, Dordrecht 1988.

    Google Scholar 

  35. Pouget, J.: Dynamics of patterns in ferroelastic-martensitic transformations I- Lattice model, II-Quasi-continuum, Phys.Rev., B43 (1991), 3575–3581, 3582–3592.

    Google Scholar 

  36. Maugin, G.A. and Cadet, S.: Existence of solitary waves in martensitic alloys, Int.J.Engng.Sci., 29 (1991), 243–258.

    CAS  Google Scholar 

  37. Christov, C.I. and Maugin, G.A.: A numerical venture into the menagerie of coherent structures of generalized Boussinesq systems, in: Coherent structures in Physics and Biology, Eds. M.Remoissenet and M.Peyrard, pp. 209–216, Springer-Vrelag, Berlin 1991.

    Google Scholar 

  38. Frenkel, J. and Kontorova, T.: On the theory of plastic deformation and twinning, Phys.Sowjet Union, 13 (1938), 1.

    CAS  Google Scholar 

  39. Barone, A., Esposito, F., Magee, G.J. and Scott, A.C.: Theory and applications of the sine-Gordon equation, Riv. Nuovo Cimento, 1 (1971), 227–267.

    Google Scholar 

  40. Weiner, J.H. and Sanders, W.T.: Peierls’ stress and creep of a linear chain, Phys.Rev., 134A (1964), 1007.

    Google Scholar 

  41. Eringen, A.C.: Theory of micropolar elasticity, in: Fracture, Vol.II, Chap.7, ed. H.Liebowitz, pp. 621–729, Academic Press, New York 1968.

    Google Scholar 

  42. Maugin, G.A. and Miled A.: Solitary waves in micropolar elastic crystals, Int.J.Engng.Sci., 24 (1986), 1477–1499.

    Google Scholar 

  43. Erbay, S., Erbay, H.A. and Dost, S.: Nonlinear wave modulation in micropolar elastic media-I-Longitudinal waves, II-Transverse waves, Int.J.Engng.Sci., 29 (1991), 845–858.

    Google Scholar 

  44. Erbay, S., Erbay, H.H. and Dost, S.: Nonlinear wave interactions in a micropolar elastic medium,Wave Motion, 16 (1992), 163–172.

    Google Scholar 

  45. Flytzanis, N., Pnevmatikos, St. and Remoissenet, M.: Soliton Resonances in atomic nonlinear chains, Physica, 26 (1987), 311–320.

    Google Scholar 

  46. Pnevmatikos, St. Flytzanis, N. and Remoissenet, M.: Soliton dynamics of nonlinear diatomic lattices, Phys.Rev., B33 (1986), 2308–2321.

    CAS  Google Scholar 

  47. Euvrard, D.: Résolution numérique des équations aux dérivées partielles (différences finies, éléments finis), Masson, Paris 1988.

    Google Scholar 

  48. Fermi, E., Pasta, J. and Ulam, S.: Studies of nonlinear problems-I, Los Alamos Report LA1940, New Mexico, 1955.

    Google Scholar 

  49. Richtmyer, R.D. and Morton, K.W.: Difference methods for initial value problems, 2nd Edition, Interscience, New York 1967.

    Google Scholar 

  50. Berezin, Yu.A.: Modelling non-linear wave processes (translation from the Russian), VNU Press, Utrecht 1987.

    Google Scholar 

  51. Rosenau, P.: Dynamics of nonlinear mass-spring chains near the continuum limit, Phys.Lett., 118A (1986), 222–227.

    Google Scholar 

  52. Ostrovskii, L.A. and Suttin, A.M.: Nonlinear waves in rods, P.M.M., 41 (1977), 543–549.

    Google Scholar 

  53. Soerensen, M.P., Christiansen, P.L. and Lomdahl, P.S.: Solitary waves in nonlinear elastic rods-I, J.Acoust.Soc.Amer., 76 (1984), 871–879.

    Google Scholar 

  54. Iskandar, L. and Jain, P.C.: Numerical solutions of the improved Boussinesq equation, Proc. Indian Acad.Sci. (Math.Sci.), 89 (1980), 171–181.

    Google Scholar 

  55. Bogolubsky, I.L.: Some examples of inelastic soliton interaction, Comput.Phys.Commun., 13 (1977), 149–155.

    Google Scholar 

  56. Clarkson, P.A., LeVeque, R.J. and Saxton, R.: Solitary wave interactions in elastic rods, Studies in Appl. Math., 75 (1986), 95–122.

    Google Scholar 

  57. Kruskal, M.D. and Zabusky, N.J.: J.Math.Phys., 5 (1964), 231.

    Google Scholar 

  58. Christov, C.I. and Maugin, G.A.: Numerics of some generalized models of lattice dynamics (Higher-order nonlinear and triple interactions), in: Nonlinear waves in solids, Eds. J.L.Wegner and F.Norwood, ASME, New York 1993.

    Google Scholar 

  59. Christov, C.I. and Maugin, G.A.: Long-time evolution of acoustic signals in nonlinear crystals, in: Proc.l3th Intern.Symp. on Nonlinear Acoustics, ed. H.Hobaek, World Scientific, Singapore 1993.

    Google Scholar 

  60. Samsonov, A.M.: On the existence of longitudinal strain solitons in an infinite nonlinearly elastic rod, Sov.Phys.Doklady, 299 (1988), 1083–1086.

    Google Scholar 

  61. Samsonov, A.M.: Nonlinear acoustic strain waves in elastic wave guides, in: Frontiers of Nonlinear Acoustics (Proc.l2th ISNA, Austin), Eds. M.F.Hamilton and D.T.Blackstock, pp. 583–588, Elsevier, London 1990.

    Google Scholar 

  62. Samsonov, A.M. and Sokurinskaya, E.V.: Energy exchange between nonlinear waves in elastic wave guides and external media, in: Nonlinear waves in active media, ed. J.Engelbrecht, pp. 99–104, Springer-Verlag, Berlin 1989.

    Google Scholar 

  63. Nelson, D.F.: Electric, Optic and Acoustic Interactions in Dielectrics, J.Wiley-Interscience, New York 1979.

    Google Scholar 

  64. Maugin, G.A.: Non-equilibrium thermodynamics of electromagnetic solids, in: Non-equilibrium thermodynamics with applications to solids (CISM Lecture Notes, 1992), ed. W.Muschik, Springer-Verlag, Wien 1993.

    Google Scholar 

  65. Ani, W. and Maugin, G.A.: Basic equations for shocks in nonlinear electroacoustic materials, J.Acoust.Soc.Amer., 85 (1989), 599–610.

    Google Scholar 

  66. Boulkeroua, A.: Lattice-dynamics theory of elastic crystals with a molecular group - Application to NaNO (in French), Doct.Thesis in Mechanics, U.P.M.C., Paris 1985.

    Google Scholar 

  67. Pouget,J. and Maugin, G.A.: Solitons and electroacoustic interactions in ferroelectric crystals -I- Single solitons and domain walls, Phys.Rev., B30 (1985), 5306–5325.

    Google Scholar 

  68. Sayadi, M.K.: Nonlinear dynamics of coherent structures in materials with microstructure (in French),Doct.Thesis in Mechanics, U.P.M.C., Paris 1991.

    Google Scholar 

  69. Pouget, J. and Sayadi, M.K.: Electromechanical coherent structures for ferroelectric elastic crystals, in: Mechanical modelling of new electromagnetic materials, ed. R.K.T. Hsieh, pp. 179–188, Elsevier, Amsterdam 1990.

    Google Scholar 

  70. Sayadi, M.K. and Pouget, J.: Soliton dynamics in a microstructured lattice model, J.Phys.A.Gen.Phys., 24 (1991), 2151–2172.

    Google Scholar 

  71. Soumahoro, K.: Mechanical behavior of antiferroelectric crystals, Doct.Thesis in Mechanics, U.P.M.C., Paris 1988.

    Google Scholar 

  72. Zorski, H. and Infeld, E.: New soliton equation for dipole chains, Phys.Rev.lett., 68 (1992), 1180–1183.

    Google Scholar 

  73. Maugin, G.A. and Miled, A.: Solitary waves in elastic ferromagnets, Phys.Rev., B33 (1986), 4830–4842.

    Google Scholar 

  74. Kosevich, A.M.: Dynamical and topologival solitons in ferromagnets and antiferromagnets, in: Solitons, Eds. S.E. Trullinger, V.E. Zakharov and V.L. Pokrovsky pp. 555–603, Elsevier, Amsterdam 1986.

    Google Scholar 

  75. Kosevich, A.M., Ivanov, B.A. and Kovalev, A.S.: Nonlinear Waves in Magnetic systems: Dynamical and topological solitons (in Russian), Naukova Dumka, Kiev 1983.

    Google Scholar 

  76. Daher, N.: Principle of virtual power: Application to nonlinear electroacoustics, State Doct.Thesis in Physics, University of Besançon, France 1987.

    Google Scholar 

  77. Daher, N. and Maugin, G.A.: Deformable semiconductors with interfaces: basic equations, Int.J.Engng.Sci., 25 (1987), 1093–1129.

    Google Scholar 

  78. Daher, N. and Maugin, G.A.: Nonlinear electroacoutsic equations in semiconductors with interfaces, Int.J.Engn.Sci., 26 (1988), 37–58.

    Google Scholar 

  79. Maugin, G.A.: Irreversible thermodynamics of deformable superconductors, C.R.Acad.Sci.paris, II-314 (1992), 889–994.

    Google Scholar 

  80. Bland, D.R.: Nonlinear dynamic elasticity, Blaisdell, Waltham, Mass. 1969

    Google Scholar 

  81. Varley, E.(editor): Propagation of shock waves in solids, Vol.AMD 17, A.S.M.E., New York 1976.

    Google Scholar 

  82. Wright, T.W.(editor): Nonlinear wave propagation in mechanics, Vol. AMD 77, A.S.M.E., New York 1986.

    Google Scholar 

  83. Graham, R.A.: Solids under high pressure shock compression, Springer-Verlag, Berlin 1993.

    Google Scholar 

  84. Brun, L.: Ondes de choc finies dans les solides élastiques, in: Mechanical waves in solids, Eds. J.mandel and L.Brun, pp. 63–155, Springer-Verlag, Wien 1975.

    Google Scholar 

  85. Perrin, G. and Delannoy-Coutris, M.: Analysis of plane elastic-plastic shock waves from the fourth-order anharmonic theory, Mechanics of Materials, 2 (1983), 139–153.

    Google Scholar 

  86. Piau, M.: Lois de comportement et ondes dans les milieux viscoplastiques en déformation finie, State Doct.Thesis in Mathematics, Université Pierre et Marie Curie, Paris 1975.

    Google Scholar 

  87. Raniecki, B.: Ordinary waves in inviscid plastic media, in: Mechanical waves in solids, Eds.J.Mandel and L.Brun, pp. 157–219, Springer-Verlag, Berlin 1975.

    Google Scholar 

  88. Nowacki, W.K.: Stress waves in non-elastic solids (translation from the Polish), Pergamon Press, Oxford 1978.

    Google Scholar 

  89. Engelbrecht, J.: An introduction to asymmetric solitary waves, Longman, London 1991.

    Google Scholar 

  90. Calogero,F. and Degasperis, A.: Spectral Transforms and Solitons-I, North-Holland, Amsterdam 1982.

    Google Scholar 

  91. Ablowitz, M.S. and Segur, H.: Solitons and the inverse scattering transform, SIAM, Philadelphia 1981.

    Google Scholar 

  92. Newell, A.C.: Solitons in mathematics and physics, SIAM, Philadelphia 1985.

    Google Scholar 

  93. Hasegawa, A.: Optical solitons in fibers, Springer-Verlag, Berlin 1989.

    Google Scholar 

  94. Zakharov, V.E. and Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation in nonlinear media, Soviet Phys. J.E.T.P., 34 (1972), 62–69.

    Google Scholar 

  95. Hui, C.Y. and Riedel, H.: The asymptotic stress and strain field near the tip of a growing crack under creep conditions, Int.J.Fracture, 17 (1981), 409.

    Google Scholar 

  96. Cadet, S.: Transverse envelope solitons in an atomic chain, Phys.Lett., 121 (1987), 77–82.

    CAS  Google Scholar 

  97. Cadet, S.: Propagation and interactions of nonlinear shear waves in a discrete lattice, Wave Motion, 11 (1989), 77–97.

    Google Scholar 

  98. Cadet, S.: Coupled transverse-longitudinal envelope modes in an atomic chain, Wave Motion, 11 (1989).

    Google Scholar 

  99. Pouget, J.: Nonlinear dynamics and instability of twin boundaries in martensitic-ferroelastic materials, in: Continuum models and discrete systems, ed. G.A.Maugin, Vol.I, pp. 296–312, Longman, London 1990.

    Google Scholar 

  100. Christov, C.I. and Maugin, G.A.: An implicit difference scheme for the long-time evolution of localized solutions of a generalized Boussinesq system, J.Comput.Phys. (submitted for publication 1993 ).

    Google Scholar 

  101. Christov, C.I. and Maugin, G.A. (in preparation, 1993 )

    Google Scholar 

  102. Ewen, J., Gunshor, R.L. and Weston, V.H.: Solitons in surface acoustic wave media, Proc. 1981 Ultrasonics Symposium, p.295–298, I.E.E.E., New York 1981.

    Google Scholar 

  103. Cantrell, J.H.: Nonlinear phenomena in solid state physics and technology, Proc. 1990 Ultrasonics Symposium, I.E.E.E., New York 1990.

    Google Scholar 

  104. Kielczynski, P.: Nonlinear ultrasonic methods in materials characterization (a Review), Internal report IMC-NRCC, Boucherville, PQ, Canada, March 1991

    Google Scholar 

  105. Kalyanasundaram, N.: Nonlinear surface acoustic waves on anisotropic solids, Int.J.Engng.Sci., 19 (1981), 279–286.

    Google Scholar 

  106. Lardner, R.W.: Nonlinear surface waves on an elastic solid, Int.J.Engng.Sci., 21 (1983), 1331–1342.

    Google Scholar 

  107. Planat, M.: Muttiple-scale analysis of the nonlinear acoustic wave propagation in anisotropic crystals, J.Appl.Phys., 57 (1985), 4911–4915.

    Google Scholar 

  108. Parker, D.F. and Talbot, F.M.: Analysis and computation for nonlinear elastic surface waves of permanent form, J.Elasticity, 15 (1985), 389–426.

    Google Scholar 

  109. Parker, D.F.: Wave form evolution for nonlinear surface elastic waves, Int.J.Engn.Sci., 26 (1988), 59–75.

    Google Scholar 

  110. Harvey, A.P. and Tupholme, G.E.: Propagation of anisotropic elastic and piezo-electric nonlinear surface waves, Wave Motion, 16 (1992), 125–136.

    Google Scholar 

  111. Bataille, K. and Lund, F.: Nonlinear waves in elastic media, Physica, 6D (1982), 95–104.

    Google Scholar 

  112. Maradudin, A.A.: Nonlinear surface acoustic waves and their associated surface acoustic solitons, in: Recent developments on Surface Acoustic Waves, Eds. D.F.Parker and G.A.Maugin, pp. 62–71, Springer-Verlag, Berlin 1988.

    Google Scholar 

  113. Maradudin, A.A. and Mayer, A.P.: Surface acoustic waves on nonlinear substrates, in: Nonlinear waves in solid states physics, Eds. A.D.Boardman, M.Bertolotti and T.Twardowski, pp. 113–161, Plenum, New York 1991.

    Google Scholar 

  114. Hadouaj, H. and Maugin, G.A.: Une onde solitaire se propageant sur un substrat élastique recouvert d’un film mince, C.R.Acad.Sci.Paris, II-309 (1989), 1877–1881.

    Google Scholar 

  115. MAUGIN, G.A. and Hadouaj, H.: Solitary surface transverse waves on an elastic substrate coated with a thin film, Phys.Rev., B44 (1991), 1266–1280.

    Google Scholar 

  116. Maugin, G.A., Hadouaj, H. and Malomed, B.A.: Nonlinear coupling between SH surface solitons and Rayleigh modes on elastic structures, Phys.Rev., B45 (1992), 9688–9694.

    Google Scholar 

  117. Hadouaj, H. and Maugin, G.A.: Surface solitons on elastic structures: numerics, Wave Motion, 16 (1992), 115–125.

    Google Scholar 

  118. Kalyanasundaram, N.: Finite-amplitude Love-waves on an isotropic layered half-space, Int.J.Engng.Sci., 19 (1981), 287–293.

    Google Scholar 

  119. Teymur, M.: Nonlinear modulation of Love waves ina compressible hyperelastic layered half space, Int.J.Engng.sci., 26 (1988), 907–927.

    Google Scholar 

  120. Gorentsveig, V.I., Kivshar, Yu.S., Kosevich, A.M. and Syrkin, E.S.: Nonlinear surface elastic modes in crystals, Phys.Lett., 144 (1990), 479–486.

    Google Scholar 

  121. Kivshar, Yu.S.: Solitons in a nonlinear elastic medium, Phys.Rev., B43 (1991)

    Google Scholar 

  122. Collet, B.: Solitons acoustiques guidés dans une plaque cristalline à symétrie cubique, J.Physique Coll.C1, Suppl.III, 2 (1992), C1–733 - C1–736.

    Google Scholar 

  123. Collet, C.: Lattice dynamics approach of Shear horizontal solitons in cubic crystal plates, in: Continuum Models of Discrete Systems (7), ed. K.-H. Anthony, Trans.Techn.Publ. Switz. 1993.

    Google Scholar 

  124. Daher, N. and Maugin, G.A.: The method of virtual power in continuum mechanics: Application to media presenting singular surfaces and interfaces, Acta Mechanica, 60 (1986), 217–240.

    Google Scholar 

  125. Murdoch, A.I.: The propagation of surface waves in bodies with material boundaries, J.Mech.Phys.Solids, 24 (1976), 137–146.

    Google Scholar 

  126. Mozhaev, V.G.: A new type of acoustic waves in solids due to nonlinearity, Phys.Lett., A139 (1989), 333–337.

    Google Scholar 

  127. Whitham, G.B.: Linear and nonlinear waves, J.WileyInterscience, New York 1974.

    Google Scholar 

  128. Benney, D.J. and Newell, A.C.: The propagation of nonlinear wave envelopes, J.Math. and Phys (now Stud.Appl.Math), 46 (1967), 133–139.

    Google Scholar 

  129. Zakharov, V.E.: Collapse of Langmuir waves, Soviet Phys.J.E.T.P., 35 (1972), 908–914.

    Google Scholar 

  130. Hadouaj, H., Malomed, B.A. and Maugin, G.A.: Dynamics of a soliton in the generalized Zakharov’s system, Phys.Rev., A44 (1991), 3925–3931.

    CAS  Google Scholar 

  131. Hadouaj, H., Malomed, B.A. and Maugin, G.A.: Solitonsoliton collisions in the generalized Zakharov’s system, Phys.Rev., A44 (1991), 3932–3940.

    CAS  Google Scholar 

  132. Maugin, G.A., Hadouaj, H. and Malomed, B.A.: Some properties of Soliton solutions of the generalized Zakharov system, (Proc.Intern.Conf.Waves and Stability, Acireale, 1990), Le Matematiche, XLVI (1991), 253–264.

    Google Scholar 

  133. Kivshar, Yu.S. and Malomed, B.A.: Dynamics of solitons in nearly integrable systems, Rev.Modern Physics, 61 (1989), 763–915.

    Google Scholar 

  134. Wesolowski, Z.: Dynamics of a bar of asymmetric cross-section, J.Engng.Math., 17 (1983), 315–321.

    Google Scholar 

  135. Engelbrecht, J., Peipman, P. and Valdeck, U.: Nonlinear effects of acoustics in solids, in: Frontiers of Nonlinear Acoustics (Proc.l2th ISNA,1990), Eds. M.K. Hamilton and D.T. Blackstock, pp. 535–540, Elsevier, London 1990.

    Google Scholar 

  136. Engelbrecht, J. and Peipman, P.: Nonlinear waves in a layer with energy influx, Wave Motion, 16 (1992), 173–181.

    Google Scholar 

  137. Rassokha, A.: Soliton localization of plastic deformation, Contributed paper to XVIIth ICTAM, Haifa, Israel, Aug.22–28, Abstracts p.122, IUTAM, 1992.

    Google Scholar 

  138. Ani, W. and Maugin, G.A.: One-dimensional nonlinear motions in electroelastic solids, Z.angew.Math.Phys., 39 (1988), 277–298.

    Google Scholar 

  139. Collet, B.: Nonlinear wave propagation in elastic dielectrics with internal variables, J.Techn.Phys., 26 (1985), 285–289.

    Google Scholar 

  140. Collet, B.: Transient nonlinear waves in deformable dielectric materials, in: Electromagnetomechanical interactions in deformable solids and structures, Eds. Y.Yamamoto and K.Miya, pp. 329–334, North-Holland, Amsterdam 1987.

    Google Scholar 

  141. Maugin, G.A., Collet,B. and Pouget, J.: Electromechanical waves in ceramics–Numerical simulations, Appl.Math.and Mech.(Shanghai), 6 (1986), 1129–1139.

    Google Scholar 

  142. Maugin, G.A., Collet, B. and Pouget, J.: Nonlinear wave propagation in coupled electromechanical systems, in: Nonlinear wave propagation in mechanics, ed. T.W.Wright, Vol.AMS 77, pp. 57–83, A.S.M.E., New York 1986.

    Google Scholar 

  143. Kalyanasundaram, N.: Nonlinear propagation characteristics of Bleustein-Gulyaev waves; J.Sound Vibr., 96 (1984), 411–420.

    Google Scholar 

  144. Tupholme, G.E. and Harvey, A.P.: Nonlinear surface acoustic waves on a piezoelectric solid, Int.J.Engng. Sci., 26 (1988), 1161–1166.

    Google Scholar 

  145. Harvey, A.P and Tupholme, G.E.: Nonlinear mode coupling of two co-directional surface acoustic waves on a piezoelectric solid, Int.J.Engng.Sci., 29 (1991), 987–998.

    Google Scholar 

  146. Parker, D. F. and David, E. A.: Nonlinear piezoelectric surface waves, Int.J.Engng.Sci., 27 (1989), 565–581.

    Google Scholar 

  147. David, E.A. and Parker D.F.: Nondistorting wave forms of electroelastic surface waves, Wave Motion, 12 (1990), 987–998.

    Google Scholar 

  148. Maugin, G.A.: Wave motion in magnetizable deformable solids, Int.J.Engng.Sci., 19 (1981), 321–388.

    Google Scholar 

  149. Pouget, J. and Maugin, G. A.: Solitons and electroacoustic interactions in ferroelectric crystals–II. Interactions of solitons and radiations, Phys.Rev., B31 (1985), 4633–4649.

    CAS  Google Scholar 

  150. Maugin, G.A.: Solitons in elastic crystals with a microstructure–Mathematical aspects, in: Trends in Applications of Pure Mathematics to Mechanics, Eds. E.Kröner and K.Kirchgassner, pp. 195–211, Springer-Verlag, Berlin 1986.

    Google Scholar 

  151. Pouget, J. and Maugin, G.A.: Influence of an external electric field on the motion of a ferroelectric domain wall, Phys.Lett., 109A (1985), 389–392.

    Google Scholar 

  152. Christiansen, P.L. and Oslen, O.H.: Propagation of fluxons on Josephson lines with impurities, Wave Motion, 4 (1982), 163–172.

    Google Scholar 

  153. Kivshar, Yu.S. and Malomed, B.A.: Dynamics of domain walls in elastic ferrmagnets and ferroelectrics, Phys. Rev., B42 (1990), 8561–8570.

    Google Scholar 

  154. Planat, M.: L’instabilité des ondes se propageant dans un milieu piézoélectrique, Coll.Phys.Suppl.C3, 51 (1990), C3–207 - C3–217.

    Google Scholar 

  155. Planat, M.: Observation of acoustic envelope solitary waves generated by metallic interdigital transducers on a quartz crystal, in: Continuum models and Discrete systems, ed. G.A.Maugin, Vol.2, pp. 339–349, Longman, London 1991.

    Google Scholar 

  156. Maugin, G.A. and Engelbrecht, J.: A Thermodynamical viewpoint to nerve-pulse dynamics, J.Non-Equilibr. Thermodyn., (in the press, 1993 ).

    Google Scholar 

  157. Barenblatt, G.I.: Intermediate asymptotics,(in Russian) 2nd Edition, Meteoizdrat, Moscow 1982.

    Google Scholar 

  158. Vavilev, V.A., Romanovskii, Yu.M, Chernayskii, D.S., and Yakhno, V.G.: Autowave processes in kinetic systems, V.E.B. Deutscher verlag der Wissen., Berlin 1987.

    Google Scholar 

  159. Sachdev, P.L.: Nonlinear diffusive waves, Cambridge University Press, U.K, 1987.

    Google Scholar 

  160. Maugin, G.A.: Applications of an energy-momentum tensor in nonlinear elastodynamics: Pseudomomentum and Eshelby stress in solitonic elastic systems, J.Mech.Phys.Sol., 29 (1992), 1543–1558.

    Google Scholar 

  161. Maugin, G.A.: Analytical and numerical problems for nonlinear wave propagation in “nearly” integrable systems, in: Analytical and Numerical aspects of wave propagation, ed. R.E. Kleinman, S. I. A.M., Philadelphia 1993.

    Google Scholar 

  162. Fokas, A.S.: Generalized symmetries and constants of motion of evolution equations, Lett.Math.Phys., 3 (1979), 467–473.

    Google Scholar 

  163. Maugin,G.A.: On the balance of pseudo-momentum in the mechanics and electrodynamics of continua, C.R.Acad.Sci.Paris, 311 (1990), 763–768.

    Google Scholar 

  164. Malomed, B.A.: Inelastic interactions of solitons in nearly integrable systems-I, II, Physica, D15 (1985), 374–384, 385–401.

    Google Scholar 

  165. Sander, J. and Hutter, K.: On the development of the theory of the solitary wave. A historical essay, Acta Mechanica, 86 (1991), 111–152.

    Google Scholar 

  166. Newell A.C.: The history of the soliton, Trans.ASME.J. Appl.Mech., 50 (1983), 1127–1138.

    Google Scholar 

  167. Scott-Russel, J., Boussinesq, J. and Appell, P.: L’onde solitaire (a collection of short texts and three engravings) by Marc Pessin, Artist-engraver, (150 signed copies only), Le Verbe et l’Empreinte, Saint-Laurent du Pont, Isère, France 1987.

    Google Scholar 

  168. Jammer, M.: The Philosophy of quantum mechanics, J. Wiley - Interscience, New York 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Wien

About this chapter

Cite this chapter

Maugin, G.A. (1994). Physical and Mathematical Models of Nonlinear Waves in Solids. In: Jeffrey, A., Engelbrecht, J. (eds) Nonlinear Waves in Solids. CISM Courses and Lectures, vol 341. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2444-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2444-4_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82558-7

  • Online ISBN: 978-3-7091-2444-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics