Skip to main content

Computational Models of Arterial Flow and Mass Transport

  • Chapter
Cardiovascular Fluid Mechanics

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 446))

Abstract

Numerical simulation of arterial hemodynamics and mass transport have become an important tool in recent years due to the significant advances in numerical mathematics, scientific computation and due to the increased power of computers. Over the past years increasingly more elaborate models have been developed in order to gain a better insight into the physiological processes in the vascular system and the initiation and development of arterial diseases. Hemodynamic factors apparently play an important role in the development of these diseases, and therefore, local arterial flow dynamics, such as flow separation, flow recirculation, low and oscillatory wall shear stress, and the influence on mass transport in the arterial lumen and in the artery wall are subjects of intensive research. Corresponding studies include rheological effects in blood flow resulting from the interactions between blood phases up to the transport processes of macromolecules in the arteries and in the artery wall layers. The problems discussed are mathematically described by systems of coupled nonlinear partial differential equations mostly in large parameter range. The numerical approach uses the finite element method, which is often the most suitable approximation technique due to its high flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, J.L., and Malone, D.M. (1974). Mechanism of osmotic flow in porous membranes. Biophys. J. 14: 957–982.

    Article  Google Scholar 

  • Back, L.H., Radbill, J.R., and Crawford, D.W. (1977). Analysis of oxygen transport from pulsatile, viscous blood flow to diseased coronary arteries of man. J. Biomechanics 10:763–774.

    Google Scholar 

  • Bassiouny, H.S., White, S., Glagov, S., Choi, E., Giddens, D.P., and Zarins, C.K. (1992). Anastomotic intimal hyperplasia: mechanical injury or flow induced. J. Vasc. Surg. 15: 708–717.

    Article  Google Scholar 

  • Batson, R.C., Sottiurai, V.S., and Craighead, C.C. (1984). Linton patch angioplasty: An adjunct to distal bypass with polytetrafluoroethylene grafts. Ann. Surg. 199: 684–693.

    Article  Google Scholar 

  • Böhme, G., and Rubart, L. (1993). Einblick in die theoretische Analyse der Stroemungen viskoelastischer Fluessigkeiten. In Mennicken, R., ed., GA MM Mitteilungen 16: 59–97.

    Google Scholar 

  • Brezzi, F., and Fortin, M. (1991). Mixed and Hybrid Finite Elements. SSCM n. 5, Springer-Verlag, Berlin.

    Google Scholar 

  • Brooks, A.N., and Hughes, T.J.R. (1982). Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32: 199–259.

    Article  MATH  MathSciNet  Google Scholar 

  • Caro, C.G., Fitz-Gerald, J.M., and Schroter, R.C. (1971). Atheroma and arterial wall shear: Observation, correlation and proposal of a shear dependent mass transfer mechanism of atherogenesis. In Proc. Roy. Soc. Lond. 177:109–159.

    Google Scholar 

  • Chien, S., Usami, S., Dellenback, R.J., and Gregersen, M.I. (1970). Shear-dependent deformation of erythrocytes in rheology of human blood. American Journal of Physiology 219: 136–142.

    Google Scholar 

  • Chorin A. (1968). Numerical solution of the Navier-Stokes equations. Math. Comp. 22: 745–762.

    Article  MATH  MathSciNet  Google Scholar 

  • Cokelet, G.R. (1980). Rheology and hemodynamics. Ann. Rev. Physiol. 42: 311–324.

    Article  Google Scholar 

  • Crone, C., and Levitt, D.G. (1984). Capillary permeability to small solutes. In Handbook of Physiology. Microcirculation. The Cardiovascular System. Bethesda, MD: Am. Physiol. Soc., sect. 2, vol. IV, pt. 1, Chapter 8, 411–466.

    Google Scholar 

  • Curry, F. E. (1984). Mechanics and thermodynamics of transcapillary exchange. In Handbook of Physiology. Microcirculation. The Cardiovascular System. Bethesda, MD: Am. Physiol. Soc., sect. 2, vol. IV, pt. 1, Chapter 8, 309–374.

    Google Scholar 

  • Cuvelier, C., Segal, A., and van Steenhoven, A.A. (1986). Finite Element Methods and Navier-Stokes Equations. D. Reidel Pulishing Company, Dordrecht/Boston/Lancaster/Tokyo.

    Google Scholar 

  • Delfino, A., Stergiopulos, N., Moore, Jr., J.E., and Meister, J.-J. (1997). Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J. Biomechanics 30: 777–786.

    Article  Google Scholar 

  • Donea, J., Giuliani, S., Laval, H., and Quartapelle, L. (1981). Solution of the unsteady Navier-Stokes equations by a finite element projections method. In Taylor, C., and Morgan, K., eds., Computational Techniques in Transient and Turbulent Flow. Pineridge Press, Swansea. 97–132.

    Google Scholar 

  • Ethier, C.R., Steinman, D.A., Zhang, X., Karpik, S.R., and Ojha, M. (1998). Flow waveform effects on end-to-side anastomotic flow patterns. J. Biomechanics 31: 609–617.

    Article  Google Scholar 

  • Fahraeus, R., and Lindquist, T. (1931). The viscosity of the blood in narrow capillary tubes. Am. J. Physiol. 96: 562–568.

    Google Scholar 

  • Formaggia, L., Gerbeau, J.-F., Nobile, F., and Quarteroni, A. (2001). On a coupling of 3D and 1D NavierStokes equations for flow problems in compliant vessels. Comp. Methods in Appl. Mech. Engng. 191: 561–582.

    Article  MATH  MathSciNet  Google Scholar 

  • Formaggia, L., and Nobile, F. (1999). A stability analysis for the Arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 7: 105–131.

    MATH  MathSciNet  Google Scholar 

  • Friedman, M.H., Bargeron, C.B., Deters, O.J., Hutchins, G.M., and Mark, F.F. (1987). Correlation between wall shear and intimal thickness at a coronary artery branch. Atherosclerosis 68: 27–33.

    Article  Google Scholar 

  • Friedman, M.H., Deters, O.J., Mark, F.F., Bargeron, C.B., and Hutchins, G.M. (1983). Arterial geometry affects hemodynamics–a potential risk factor for atherosclerosis. Atherosclerosis 46: 225–231.

    Article  Google Scholar 

  • Friedman, M.H., and Fry, D.L. (1993). Arterial permeability dynamics and vascular disease. Atherosclerosis 104: 189–194.

    Article  Google Scholar 

  • Fry, D.L. (1985). Mathematical models of arterial transmural transport. Am. J Physiol. 248:H240–H263. Fry, D.L. (1987). Mass transport, atherogenesis, and risk. Arteriosclerosis 7: 88–100.

    Article  Google Scholar 

  • Fung, Y.C. (1965). Foundations of Solid Mechanics. Prentice-Hall International Series in Dynamics: Prentice-Hall, Inc., Englewood Cliffs, N.J.

    Google Scholar 

  • Galdi, G.P., Heywood, J.G., and Rannacher, R. (2000). Fundamental Directions in Mathematical Fluid Mechanics. Birkhaeuser Verlag, Basel.

    Book  MATH  Google Scholar 

  • Gijsen, F.J.H. (1998). Modeling of wall shear stress in large arteries. Thesis, TU-Eindhoven.

    Google Scholar 

  • Gijsen, F.J.H., Allanic, E., van de Vosse, F.N., and Janssen, J.D. (1999). The influence of the non Newtoniean properties of blood on the flow in large arteries: unsteady flow in a 900 curved tube. J. Biomechanics 32: 705–713.

    Article  Google Scholar 

  • Girault, V., and Raviart, P.-A. (1986). Finite element methods for Navier-Stokes equations. Springer-Verlag, Berlin Heidelberg New York Tokyo.

    Book  MATH  Google Scholar 

  • Goldsmith, H.L, and Marlow, J. (1979). Flow behaviour of erythrocytes. II. Particle motions in concentrated suspensions of ghost cells. Journal of Colloid Interface Science 71: 383–407.

    Article  Google Scholar 

  • Gresho, P.M., Chan, S.T., Lee, RL., and Upson, C.D. (1984). A modified finite element method for solving the time-dependent incompressible Navier-Stokes equations. Int. J. Num. Meth. Fluids 4: 557–598.

    Article  MATH  Google Scholar 

  • Gresho, P.M., and Sani, R.L. (2000). Incompressible Flow and the Finite Element Method, Vol. 2, John Wiley and Sons, Chichester.

    MATH  Google Scholar 

  • Gunzberger, M.D. (1989). Finite Element Methods for Viscous Incompressible Flows, A Giude to Theory, Practice and Algorithms. Academic Press Inc., San Diego.

    Google Scholar 

  • Hofer, M. (1998). Numerische Simulation von Multiphasenstroemungen und Anwendungen auf die Blutstroemung. Dissertation, TU-Graz.

    Google Scholar 

  • Hofer, M., and Perktold, K. (1995). Vorkonditionierter konjugierter Gradienten Algorithmus für große schlecht konditionierte unsymmetrische Gleichungssysteme. Suppl. Vol. ZAMM Z. angew. Math. Mech. 75 SII: 641–642.

    Google Scholar 

  • Hofer, M., and Perktold, K. (1997). Computer simulation of concentrated fluid-particle suspension flows in axisymmetric geometries. Biorheology 34: 261–279.

    Article  Google Scholar 

  • Huang, Y., Rumschitzki, D., Chien, S., and Weinbaum, S. (1997). A fiber matrix model for the filtration through fenestral pores in a compressible arterial intima. Am. J. Physiol. 272: H2023 - H2039.

    Google Scholar 

  • Huang, Z.J., and Tarbell, J.M. (1997). Numerical simulation of mass transfer in porous media of blood vessel walls. Am. J. Physiol. 273: H464 - H477.

    Google Scholar 

  • Huang, Y., Weinbaum, S., Rumschitzki, D., and Chien, S. (1992). A fiber matrix model for the growth of macromolecular leakage spots in the arterial intima. Advances in Biological Heat and Mass Transfer, HTD-Vol. 231, ASME 1992: 81–92.

    Google Scholar 

  • Hughes, T.J.R., Liu, W.K., and Zimmermann, T.K. (1991). Lagrangian-Eulerian finite element formulation in incompressible viscous flows. Comput. Methods Appl. Mech. Engrg, 29: 329–349.

    Article  MathSciNet  Google Scholar 

  • Hughes, T.J.R., Mallet, M., and Mizukami, A. (1986). A new finite element formulation for computational fluid dynamics: II. Beyond SUPG. Comput. Methods Appl. Mech. Engrg. 54: 341–355.

    Article  MATH  MathSciNet  Google Scholar 

  • Joseph, D.D. (1990). Fluid Dynamics of Viscoelastic Liquids. Vol. 84 of Applied Mathematical Science. Springer-Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo, Hong Kong.

    Google Scholar 

  • Kamer, G., and Perktold, K. (1998). The influence of flow on the concentration of platelet active substances in the vicinity of mural microthrombi. Computer Methods in Biomechanics and Biomedical Engineering 1: 285–301.

    Article  Google Scholar 

  • Karner, G., and Perktold, K. (2000). Effect of endothelial injury and increased blood pressure on albumin accumulation in the arterial wall: a numerical study. J. Biomechanics 33: 709–715.

    Article  Google Scholar 

  • Karner, G., Perktold, K., Hofer, M., and Liepsch, D. (1999). Flow characteristics in an anatomically realistic compliant carotid artery bifurcation model. Computer Methods in Biomechanics and Biomedical Engineering 2: 171–185.

    Article  Google Scholar 

  • Karner, G., Perktold, K., and Zehentner, H.P. (2001). Computational modeling of macromolecule transport in the arterial wall. Computer Methods in Biomechanics and Biomedical Engineering 3: 491–504.

    Google Scholar 

  • Keunings, R. (1989). Simulation of viscoelastic fluid flow. In Tucker III, C.L., ed., Computer Modeling for Polymer Processing. Hanser Publishers, Munich, Vienna, New York. 403–469.

    Google Scholar 

  • Kissin, M., Kansal, N., Pappas, P.J., DeFouw, D.O., Duran, W.N., and Hobsen, R.W. (2000). Vein interposition cuffs decrease the intimal hyperplastic response of polytetrafluorethylene bypass grafts. J. Vasc. Surg. 31: 69–83.

    Article  Google Scholar 

  • Koiter, W.T., and Simmonds, J.C. (1973). Foundations of shell theory. In Proc. 13th Int. Congress Theor. Appl. Mech. Berlin: Springer-Verlag, 150–176.

    Google Scholar 

  • Ku, D., Giddens, D.P., Zarins, C.K., and Glagov, S. (1985). Pulsatile flow and atherosclerosis in the human carotid bifurcation. Atherosclerosis 5: 293–302.

    Article  Google Scholar 

  • Lei, M., Kleinstreuer, C., and Archie, Jr., J.P. (1996). Geometric design improvements for femoral graft-artery junctions mitigating restenosis. J. Biomechanics 29: 1605–1614.

    Google Scholar 

  • Lemson, M.S., Tordoir, J.H.M., Daemen, M.J.A.P., and Kitslaar, P.J.E.H.M. (2000). Intimal hyperplasia invascular grafts. Eur. J. Vasc. Endovasc. Surg. 19: 336–350.

    Article  Google Scholar 

  • Leuprecht, A., and Perktold, K. (2001). Computer simulation of non-Newtonian effects on blood flow in large arteries. Computer Methods in Biomechanics and Biomedical Engineering 4: 149–163.

    Article  Google Scholar 

  • Leuprecht, A., Perktold, K., Prosi, M., Berk, T., Trubel, W., and Schima, H. (2001). Numerical study of hemodynamics and wall mechanics in distal end-to-side anastomoses of bypass grafts. J. Biomechanics 35: 225–236.

    Article  Google Scholar 

  • Lever, M.J. (1995). Mass transport through the walls of arteries and veins. In Jaffrin, M.Y., and Caro, C.G., eds., Biological Flow, Plenum Press: New York, 177–197.

    Google Scholar 

  • Lever, M.J., and Coleman, P.J. (1995). Fractionation of plasma proteins during their passage through blood vessel walls. In Hochmuth, R.M., Langrana, N.A., and Hefzy, M.S., eds., Proc. 1995 Bioengineering Conference, BED-Vol. 29, ASME, New York, 133–134.

    Google Scholar 

  • Liepsch, D.W., Thurston, G., and Lee, M. (1991). Studies of fluids simulating blood-like rheological properties and applications in models of arterial branches. Biorheology 28: 39–52.

    Google Scholar 

  • Ma, P., Li, X., and Ku, D.N. (1997). Convective mass transfer at the carotid bifurcation. J. Biomechanics 30: 565–571.

    Article  Google Scholar 

  • McIntire, L.V., and Tran-Son Tay, R. (1989). Concentration of materials released from mural platelet aggregates: flow effects. In Yang, W.J., and Chun, J.L, eds., Biomedical Engineering, Hemisphere Publishing Corporation, New York–Washington, 229–245.

    Google Scholar 

  • Meyer, G., Merval, R., and Tedgui, A. (1996). Effects of pressure-induced stretch and convection on low density lipoprotein and albumin uptake in the rabbit aortic wall. Circ. Res. 79:532–540.

    Google Scholar 

  • Miller, J.H., Foreman, R.K., Ferguson, L., and Faris, I. (1984). Interposition vein cuff for anastomosis of prosthesis to small artery. Aust. N.Z. J. Surg. 54:283–285.

    Google Scholar 

  • Nerem, R.M., and Cornhill, J.F. (1980). The role of fluid mechanics in atherogenesis. ASME J. Biomech. Eng. 102: 181–189.

    Google Scholar 

  • Nobile, F. (2001). Numerical Approximation of Fluid-Structure Interaction Problems with Application to Hemodynamics. PhD thesis, École Polytechnique Fédérale de Lausanne (EPFL), Thesis N. 2458.

    Google Scholar 

  • Nunziato, J.W. (1983). A multiphase mixture theory for fluid-particle flows. In Meyer R.E., ed., The Theory of Dispersed Multiphase Flow. Proc. of an Advanced Seminar Conducted by the Mathematics Research Center, University of Wisconsin-Madison. Academic Press, New York. 191–226.

    Google Scholar 

  • Ogston, A.G., Preston, B.N., and Wells, J.D. (1973). On the transport of compact particles through solutions of chainpolymers. Proc. R. Soc. London Ser. A 333: 297–316.

    Google Scholar 

  • Ojha, M. (1994). Wall shear stress temporal gradient and anastomotic intimai hyperplasia. Circ. Res. 74: 1227–1231.

    Article  Google Scholar 

  • Osenberg, H.P. (1991). Simulation des arteriellen Blutflusses - Ein allgemeines Modell mit Anwendung auf das menschliche Hirngefäßsystem. Dissertation, ETH Zürich 9342, IBT Zürich.

    Google Scholar 

  • Penn, M.S., Saidel, G.M., and Chisolm, G.M. (1994). Relative significance of endothelium and internal elastic lamina in regulating the entry of macromolecules into arteries in vivo. Circ. Res. 74: 74–82.

    Article  Google Scholar 

  • Perktold, K. (1987). On numerical simulation of three-dimensional physiological flow problems. Ber. Math.-Stat. Sektion, Forschungsges. Johanneum Graz, Nr. 280, Graz.

    Google Scholar 

  • Perktold, K., and Hofer, M. (1999). Mathematical modelling of flow effects and transport processes in arterial bifurcation models. In Xu, X.Y., and Collins, M.W., eds., Haemodynamics of Arterial Organs. WIT Press. Southampton, Boston. 43–84.

    Google Scholar 

  • Perktold, K., Hofer, M., Rappitsch, G., Low, M., Kuban, B.D., and Friedman, M.H. (1998). Validated computation of physiologic flow in a realistic coronary artery branch. J. Biomechanics 31: 217–228.

    Article  Google Scholar 

  • Perktold, K., and Karner, G. (2001). Computational principles and models of hemodynamics. In Hennerici, M., and Meairs, S., eds., Cerebrovascular Ultrasound-Theory, Practice and Future Developments. Cambridge University Press, 63–76.

    Google Scholar 

  • Perktold, K., Leuprecht, A., Prosi, M., Berk, T., Czerny, M., Trubel, W., and Schima, H. (2002). Fluid dynamics, wall mechanics and oxygen transfer in peripheral bypass anastomoses. Annals of Biomedical Engineering 30: 447–460.

    Article  Google Scholar 

  • Perktold, K., Prosi, M., Leuprecht, A., Ding, Z., and Friedman, M.H. (2001). Curvature effects on bifurcating coronary artery flow. BED-Vol. 50, 2001 Bioengineering Conference, ASME 2001: 69–70.

    Google Scholar 

  • Perktold, K., and Rappitsch, G. (1994). Mathematical modeling of local arterial flow and vessel mechanics. In Crolet, J.M., and Ohayon, R., eds., Computational methods for fluid-structure interaction. Pitman Research Notes in Mathematics Series 306, Longman Scientific and Technical, J. Wiley and Sons, New York. 230–245.

    Google Scholar 

  • Perktold, K., Resch, M., and Florian, H. (1991). Pulsatile non-Newtonian flow characteristics in a threedimensional human carotid bifurcation model. Jounal ofBiomechanical Engineering 113: 464–475.

    Article  Google Scholar 

  • Phillips, W., and Deutsch, S. (1975). Towards a constitutive equation for blood. Biorheology 12: 383–389.

    MathSciNet  Google Scholar 

  • Quarteroni, A., and Formaggia, L. (2002). Mathematical Modelling and Numerical Simulation of the Cardiovascular System. Modeling and Scientific Computing, MOX-Report No. 01.

    Google Scholar 

  • Quarteroni, A., Ragni, S., and Veneziani, A. (2001). Coupling between lumped and distributed models for blood problems. Computing and Visualisation in Science 4: 111–124.

    Article  MATH  MathSciNet  Google Scholar 

  • Quarteroni, A., and Valli, A. (1994). Numerical Approximation of Partial Differential Equations. Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Quarteroni, A., Veneziani, A., and Zunino, P. (2002). Mathematical and numerical modelling of solute dynamics in blood flow and arterial walls. SIAM J. Numer. Anal. 39: 1488–1511.

    Article  MathSciNet  Google Scholar 

  • Rappitsch, G., and Perktold, K. (1996). Computer simulation of convective diffusion processes in large arteries. J. Biomechanics 29: 207–215.

    Article  Google Scholar 

  • Rappitsch, G., Perktold, K., and Pernkopf, E. (1997). Numerical modelling of shear-dependent mass transfer in large arteries. Int. J. Numer. Meth. Fluids 25: 847–857.

    Article  MATH  Google Scholar 

  • Reddy, J.N., and Gartling, D.K. (1994). The Finite Element Method in Heat Transfer and Fluid Dynamics. CRC Press, Boca Raton.

    MATH  Google Scholar 

  • Reneman, R.S., van Merode, T., Hick, P.J.J., and Hoeks, A.P.G. (1985). Flow velocity pattern in and distensibility of the carotid artery bulb in subjects of various ages. Circulation 71: 500–509.

    Article  Google Scholar 

  • Santamaria, A., Siegel, J.M., and Moore Jr., J.E. (1998). Computational analysis of flow in a curved tube model of the coronary arteries: Effects of time-varying curvature. Annals of Biomedical Engineering 26: 944–954.

    Article  Google Scholar 

  • Schmid-Schoenbein, H., Grunau, G., and Braeuer, H. (1980). Exempla haemorheologica. Albert-Roussel Pharma GmbH.

    Google Scholar 

  • Segre, G., and Silberberg, A. (1962). Behaviour of macroscopic rigid sheres in Poiseulle flow, parts 1 and 2. Journal of Fluid Mechanics 12: 115–157.

    Article  Google Scholar 

  • Sharp, M.K., Thurston, G.B., and Moore, Jr., J.E. (1996). The effect of blood viscoelasticity on pulsatile flow in stationary and axially moving tubes. Biorheology 33: 185–208.

    Article  Google Scholar 

  • Sottiurai, V.S., Yao, J.S.T., Baston, R.C., Sue, S.L., Jones, R., and Nakamura, Y.A. (1989). Distal anastomotic intimal hyperplasia: histological character and biogenesis. Ann. Vasc. Surg. 3: 26–33.

    Article  Google Scholar 

  • Shyy, W., Thakur, S., Ouyang, H., Liu, J., and Blosch, E. (1997). Computational techniques for complex transport phenomena. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Tanner, R.I. (1985). Engineering Rheology. Clarendon Press, Oxford.

    MATH  Google Scholar 

  • Tarbell, J.M. (1993). Bioengineering studies of the endothelial transport barrier. Bioengineering Science News, BMES Bulletin 17: 35–39.

    Google Scholar 

  • Tarbell, J.M., Lever, M.J., and Caro, C.G. (1988). The effect of varying albumin concentration on the hydraulic conductivity of the rabbit common carotid artery. Microvascular Research 35: 204–220.

    Article  Google Scholar 

  • Taylor, R.S., Loh, A., McFarland, R.J., Cox, M., and Chester, J.F. (1992). Improved technique for polytetrafluoroethylene bypass grafting: long-term results using anastomotic vein patches. Br. J. Surg. 79: 348–354.

    Article  Google Scholar 

  • Temam, R. (1984). Navier-Stokes Equations, Theory and Numerical Analysis. North Holland, Amsterdam. Thurston, G.B. (1979). Rheological parameters for the viscosity, viscoelasticity and thixotropy of blood. Biorheology 16: 149–162.

    Google Scholar 

  • Trubel, W., Schima, H., Moritz, A., Raderer, F., Windisch, A., Ullrich, R., Windberger, U., Losert, U., and Polterauer, P. (1995). Compliance mismatch and formation of distal anastomotic intimal hyperplasia in externally stiffened and lumen-adapted venous grafts. Eur. J. Vasc. Endovasc. Surg. 10: 1–9.

    Article  Google Scholar 

  • Van Merode, T., Hick, P.J.J., Hoeks, A.P.G., Rahn, K.H., and Reneman, R.S. (1988). Carotid artery wall properties in normotensive and borderline hypertensive subjects of various ages. Ultrasound in Med. and Biol. 14: 563–569.

    Article  Google Scholar 

  • Wada, S., and Karino, T. (2000). Computational study on LDL transfer from flowing blood to arterial walls. In Yamaguchi, T., ed., Clinical Application of Computational Mechanics to the Cardiovascular System. Springer-Verlag, Tokyo. 157–173.

    Chapter  Google Scholar 

  • Walitza, E. (1990). Zum nicht-Newtonschen Flieszverhalten von Blut und einigen damit verbundenen Konsequenzen fuer laminare Stroemungen. Dissertation, Universitaet Stuttgart.

    Google Scholar 

  • Weydahl, E.S., and Moore, Jr., J.E. (2001). Dynamic curvature strongly affects wall shear rates in a coronary artery bifurcation model. J.Biomechanics 34: 1189–1196.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Perktold, K., Prosi, M. (2003). Computational Models of Arterial Flow and Mass Transport. In: Pedrizzetti, G., Perktold, K. (eds) Cardiovascular Fluid Mechanics. International Centre for Mechanical Sciences, vol 446. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2542-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2542-7_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-00538-5

  • Online ISBN: 978-3-7091-2542-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics