Skip to main content

Hydrodynamics of Surface Tension Dominated Flows

  • Chapter
Interfacial Phenomena and the Marangoni Effect

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 428))

Abstract

This series of lectures is concerned with the fluid dynamics of surface tension driven flows. Surface tension forces arise at the interface between two fluids (e.g. water and air) and can be of central importance in applications where a separating (and in many cases moving) interface is part of the process. Examples include, but are not limited to, the dynamics of liquid films, jets, and drops.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aris, R. 1962 Vectors, Tensors, and the Basic Equations of Fluid Mechanics. Prentice Hall, New Jersey.

    MATH  Google Scholar 

  2. Batchelor, G.K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge, England.

    Google Scholar 

  3. Bel Fdhila, R. and Duineveld, P.C. 1996 The effect of surfactants on the rise of a spherical bubble at high Reynolds and Peclet numbers. Phys. Fluids, 8, pp. 310–321.

    Google Scholar 

  4. Berger, S.A. 1988 Initial-value stability analysis of a liquid jet. SIAM J. Appl. Math., 48, pp. 973–991.

    MATH  Google Scholar 

  5. Brenner, M.P., Lister, J.R. and Stone, H.A.

    Google Scholar 

  6. Briggs, R.J. 1964 Electron Stream Interaction With Plasmas. MIT Press, Cambridge, MA.

    Google Scholar 

  7. Clift, R., Grace, J.R. and Weber, M.E. 1978 Bubbles, Drops and Particles. Academic Press, New York.

    Google Scholar 

  8. Chandrasekhar, S. 1961 Hydrodynamic ad Hydromagnetic Stability. Clarendon Press, Oxford.

    Google Scholar 

  9. Chauhan, A., Maldarelli, C., Rumschitzki, D.S. and Papageorgiou, D.T. 1996 Temporal and spatial instability of an inviscid compound jet. Rheol Acta, 35, pp. 567–583.

    Article  Google Scholar 

  10. Chauhan, A., Maldarelli, C., Papageorgiou, D.T. and Rumschitzki, D.S. 1999 Linear instability of a two-phase compound jet. IUTAM Symposium on Nonlinear Singularities in Deformation and Flow, D. Durbn and J.R.A. Pearson eds, Kluwer Academic.

    Google Scholar 

  11. Chauhan, A., Maldarelli, C., Rumschitzki, D.S. and Papageorgiou, D.T. 2000 The capillary instability of a viscous compound jet. J. Fluid Mech., in the press.

    Google Scholar 

  12. Chen, J. and Stebe, K. 1997 Surfactant-induced retardation of the thermocapillary migration of a droplet. J. Fluid Mech., 340, pp. 35–60.

    Google Scholar 

  13. Chen, Y.-J. and Steen, P. 1997 Dynamics of inviscid capillary breakup: Collapse and pinchoff of a film bridge. J. Fluid Mech., 341, pp. 245–267.

    Article  MATH  MathSciNet  Google Scholar 

  14. Chorin,A.J. 1968 Math. Comput., 22, pp. 745–762.

    Google Scholar 

  15. Day, R.F., Hinch, E.J. and Lister, J.R. 1998 Self-similar capillary pinchoff of an inviscid fluid. Phys. Rev. Lett., 80, p. 704.

    Article  Google Scholar 

  16. Denn, M.M. 1980 Drawing of liquids to form fibers. Annu. Rev. Fluid Mech., 12, p. 365.

    Google Scholar 

  17. Drazin, P.G. and Reid, W.H. 1981 Hydrodynamic Stability. Cambridge University Press, London.

    MATH  Google Scholar 

  18. Edwards, D.A., Brenner, H. and Wasan, D.T. 1991 Interfacial Transport Processes and Rheology. Butterworth-Heinemann Series in Chemical Engineering, Massachusetts.

    Google Scholar 

  19. Eggers, J. 1993 Universal pinching of 3D axisymmetric free-surface flow. Phys. Rev. Lett., 71, pp. 3458–3460.

    Article  Google Scholar 

  20. Eggers, J. 1995 Theory of drop formation. Phys. Fluids, 7, pp. 941–953.

    Article  MATH  MathSciNet  Google Scholar 

  21. Eggers, J. 1997 Rev. Modern Phys..

    Google Scholar 

  22. Elzinga, E.R. and Banchero, J.T. 1961 Some observations on the mechanics of drops in liquid-liquid systems, AIChE J., 7, pp. 394–399.

    Article  Google Scholar 

  23. Ennis, B.J., Li, J., Tardos, G.I. and Pfeffer, R. 1990 The influence of viscosity on the strength of an axially strained pendular liquid bridge, Chem. Eng. Sci., 45, p. 3071.

    Article  Google Scholar 

  24. Entov and Hinch, E.J. 1997

    Google Scholar 

  25. Felderhof, B.U. 1968 Dynamics of free liquid films. J. Chem. Phys., 49, pp. 44–51.

    Article  Google Scholar 

  26. Forest, M.G. and Wang, Q. 1990 Change-of-type behavior in viscoelastic slender jet models. Theoret. Comput. Fluiud Dynam., 2, pp. 1–25.

    MATH  Google Scholar 

  27. Frumkin, A.N. and Levich, V.G. 1947 On surfactants and interfacial motion, Zhur. Fiz. Khim., 21, p. 1183. (In Russian.)

    Google Scholar 

  28. Garner, F.H. and Skelland, H.P. 1955 Some factors afffecting droplet behavior in liquid-liquid systems, Chem. Engng. Sci., 4, pp. 149–158.

    Article  Google Scholar 

  29. Happel, J. and Brenner, H. 1962 Low Reynolds Number Hydrodynamics. Prentice Hall.

    Google Scholar 

  30. Harper, J.F. 1973 On bubbles with small immobile adsorbed films rising in liquids at low Reynolds numbers. J. Fluid Mech., 58, pp. 539–545.

    Article  MATH  Google Scholar 

  31. He, Z., Dagan, Z. and Madarelli, C. 1991 The size of stagnant caps of bulk soluble surfactant on interfaces of translating fluid droplets. J. Colloid and Interface Sci., 146, pp. 442–451.

    Article  Google Scholar 

  32. Hertz, C.A. and Hermanrud, B. 1983 A liquid compound jet. J. Fluid Mech., 131, pp. 271–287.

    Article  Google Scholar 

  33. Huang, W.S. and Kintner, R.C. 1969 Effects of surfactants on mass transfeer inside drops, AIChEJ., 15, pp. 735–744.

    Article  Google Scholar 

  34. Johnson, T.A. ad Patel, V.C. 1999 Flow past a sphére up to a Reynolds number of 300. J. Fluid Mech., 378, pp. 19–70.

    Article  Google Scholar 

  35. Keller, J.B., Rubinow, S.L. and Tu, Y.O. 1973 Spatial instability of a jet. Phys. Fluids, 16, pp. 2052–2055.

    Article  Google Scholar 

  36. Kim, H. and Subramanian, R. 1989a Thermocapillary migration of a droplet with insoluble surfactant, I. Surfactant cap, J. Colloid and Int. Sci., 127, pp. 417–430.

    Article  Google Scholar 

  37. Kim, H. and Subramanian, R. 1989b Thermocapillary migration of a droplet with insoluble surfactant, II. General case, J. Colloid and Int. Sci., 130, pp. 112–125.

    Article  Google Scholar 

  38. Kroger, R., Berg, S., Delgado, A. and Rath, H.J. 1992 Stretching behavior of large polymeric and Newtonian liquid bridges in plateau simulation. J. Non-Newtonian Fluid Mech., 45, p. 385.

    Google Scholar 

  39. Lamb, H. 1932 Hydrodynamics. Cambridge University Press.

    Google Scholar 

  40. Lee, H.C. 1974 Drop formation in a liquid jet. IBM J. Res. Dev., 18, pp. 364–369.

    Article  MATH  Google Scholar 

  41. Levich, V.G. 1962 Physicochemical Hydrodynamics. Englewood Cliffs, New Jersey: Prentice Hall.

    Google Scholar 

  42. Leib, S.J. and Goldstein, M.E. 1986 The generation of capillary instabilities on a liquiud jet. J. Fluid Mech., 168, pp. 479–500.

    Google Scholar 

  43. Mansour, N.N. and Lundgren, T.S. 1990 Satellite formation in capillary jet breakup. Phys. Fluids A, 2, pp. 1141–1144.

    Article  Google Scholar 

  44. McConnell, A.J. 1957 Applications of Tensor Analysis. Dover, New York.

    Google Scholar 

  45. McKinley, G.H. and Tripathi, A. 2000 J. Rheol.,in the press.

    Google Scholar 

  46. McLaughlin, J.B. 1996 Numerical simulation of bubble motion in water. J. Colloid Interface Sci., 184, pp. 614–625.

    Google Scholar 

  47. Meseguer, J. 1983 The breaking of axisymmetric liquid bridges. J. Fluid Mech., 130, pp. 12–151.

    Article  MathSciNet  Google Scholar 

  48. Middleman, S. 1995 Modeling Axisymmetric Flows. Dynamics of Films, Jets ad Drops. Academic Press, San Diego, CA.

    Google Scholar 

  49. Nadim, A. and Bohran, A. 1989 Effects of surfactant on the motion and deformation of a droplet in thermocapillary migration, PhysicoChemical Hydrodynamics, 11, pp. 753–764.

    Google Scholar 

  50. Papageorgiou, D.T. 1995a On the breakup of viscous liquid threads. Phys. Fluids, 7 (7), pp. 1529–1544.

    Article  MATH  MathSciNet  Google Scholar 

  51. Papageorgiou, D.T. 1995b Analytical description of the breakup of liquid jets. J. Fluid Mech., 301, pp. 109–132.

    Google Scholar 

  52. Papageorgiou, D.T. 1996 Description of jet breakup. Advances in Multi-Fluid Flows, Coward, Papageorgiou, Renardy and Sun eds, SIAM Proceedings Series, pp. 171–198.

    Google Scholar 

  53. Papageorgiou, D.T. and Orellana, 0. 1998 Study of cylindrical jet breakup using one-dimensional approximations of the Euler equations. SIAM J. Appl. Math., 59 No 1, pp. 286–317.

    Article  Google Scholar 

  54. Patankar, S.V. 1980 Numerical Heat Transfer and Fluid Flow. Hemisphere Publishers.

    Google Scholar 

  55. Peyret, R. an Taylor, T.D. 1983 Computational Methods for Fluid Flow. Springer-Verlag.

    Google Scholar 

  56. Pozrikidis, C. 1999

    Google Scholar 

  57. Pozrikidis, C. 1996 Introduction to the Boundary Integral Method. Cambridge Texts in Applied Mathematics Serries, Cambridge Universiity Press.

    Google Scholar 

  58. Raymond, D.R. and Zieminski, S.A. 1971 AIChEJ, 17, pp. 57–65.

    Article  Google Scholar 

  59. Rayleigh, Lord 1879 On the instability of jets. Proc. Lond. Math. Soc., 10, p. 4.

    Google Scholar 

  60. Rayleigh, Lord 1879 On the instability of a cylinder of viscous liquid under capillary forces. Phil. Mag., 34, p. 145.

    Article  Google Scholar 

  61. Renardy, M. 1994 Some comments on the surface-tension driven breakup (or lack of it) of viscoelastic jets. J. Non-Newtonian Fluid Mech., 51, p. 97.

    Article  Google Scholar 

  62. Richards, J.R., Lenhoff, A.M. and Beris, A.N. 1994 Dynamic breakup of liquid-liquid jets. Phys. Fluids, 6, p. 2640.

    Article  MATH  Google Scholar 

  63. Ryskin, G. and Leal, L.G. 1982 Numerical solution of free boundary problems in fluid mechanics. J. Fluid Mech., 148, pp. 1–17.

    Article  Google Scholar 

  64. Sadhal, s. and Johnson, R. 1983 Stokes flow past bubbles and drops partially coated with thin films. Part 1. Stagnant cap of surfactant film–exact solution. J. Fluid Mech., 126, pp. 237–250.

    Article  MATH  Google Scholar 

  65. Sanz, A. and Meseguer, J. 1985 One-dimensional linear analysis of a compound jet. J. Fluid Mech., 159, pp. 55–68.

    Article  MATH  Google Scholar 

  66. Schulkes, R.M.S.M.S. 1993 Dynamics of liquid jets revisited. J. Fluid Mech., 250, pp. 635–650.

    Google Scholar 

  67. Schulkes, R.M.S.M.S. 1993 Nonlinear dynamics of liquid columns. Phys. Fluids, A 5, pp. 2121–2130.

    Google Scholar 

  68. Stone, H.A. 1990 A simple derivation of time dependent convective diffusion equation for surfactant transport along a deforming interface, Phys. Fluids A, 2, p. 111.

    Article  Google Scholar 

  69. Stone, H.A. and Leal, L.G. 1989 Relaxation and breakup of an initially extended drop in an otherwise quiescent fluid. J. Fluid Mech., 198, p. 399.

    Article  Google Scholar 

  70. Subramanian, R.S. 1992 The motion of bubbles and drops in reduced gravity, in Transport Processes in Bubbles, Drops and Particles, Subramanian, Chabra and DeKee, Eds., Hemisphere Publishing, New York, NY.

    Google Scholar 

  71. Sweet, R.G. 1964 Stanford University Technical Report No. 1722.

    Google Scholar 

  72. Takemura, F. and Yabe, A. 1999 Rising speed and dissolution rate of a carbon dioxide bubble in slightly contaminated water, J. Fluid Mech., 378, pp. 319–334.

    Article  Google Scholar 

  73. Tannerhill, C., Anderson, D.A. and Pletcher, R.H. 1997 Computational Fluid Mechanics and Heat Transfer. Taylor & Francis. Washington, DC.

    Google Scholar 

  74. Taylor, G.I. 1959 The dynamics of thin sheets of fluid. II. Waves on fluid sheets. Proc. Roy. Soc., A 253, pp. 296–312.

    Article  Google Scholar 

  75. Ting, L. and Keller, J.B. 1990 Slender jets and thin sheets with surface tension. SIAM J. Appl. Math., 50, pp. 1533–1546.

    Article  MATH  MathSciNet  Google Scholar 

  76. Tjahjadi, M., Stone, H.A. and Ottino, J.M. 1992 Satellite and subsatellite formation in capillary breakup. J. Fluid Mech., 243, p. 297.

    Article  Google Scholar 

  77. Tomotika, S. 1935 On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous liquid. Proc. Roy. Soc., A 150, pp. 322–337.

    Article  MATH  Google Scholar 

  78. Tsamopoulos, J., Chen, T.-Y. and Borkar, A. 1992 Viscous oscillations of capillary bridges. J. Fluid Mech., 235, p. 579.

    Article  MATH  Google Scholar 

  79. Wang, Y. 1999 Theoretical study of bubble motion in surfactant solutions. Ph.D. Thesis, New Jersey Institute of Technology.

    Google Scholar 

  80. Wang, Y., Papageorgiou, D.T. and Maldarelli, C. 1999 Increased mobility of as surfactant-retarded bubble at high bulk concentrations, J. Fluid Mech., 390, pp. 251–270.

    Article  MATH  Google Scholar 

  81. Wang, Y., Papageorgiou, D.T. and Maldarelli, C. 2000 Using surfactants to control the formation and size of wakes behind moving bubbles at order one Reynolds numbers, J. Fluid Mech., submitted.

    Google Scholar 

  82. Wong, H., Rumschitzki, D.S. amd Maldarelli, C.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Wien

About this chapter

Cite this chapter

Papageorgiu, D.T. (2002). Hydrodynamics of Surface Tension Dominated Flows. In: Velarde, M.G., Zeytounian, R.K. (eds) Interfacial Phenomena and the Marangoni Effect. International Centre for Mechanical Sciences, vol 428. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2550-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2550-2_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83696-5

  • Online ISBN: 978-3-7091-2550-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics