Skip to main content

Turbulent Drag-Reduction Mechanisms: Strategies for Turbulence Management

  • Chapter
Turbulence Structure and Modulation

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 415))

Abstract

Recent developments in turbulent drag-reduction research using riblets, spanwisewall oscillation and compliant coating are sketched here together with some experimental results. Views on drag reduction mechanisms are then given using the evidence derived from these experimental results. In all cases being studied here, only the surface boundary conditions of turbulent boundary layers were change by the devices. Consequently, the manipulation of the boundary layer was conducted through a modification of the near-wall turbulence structure. Indeed, it was found that an effective modification of counter-rotating longitudinal vortices is a key to the successful strategy for turbulent drag reduction. The strength of near-wall vortices was reduced by these devices to give rise to weaker burst events, leading to reductions in turbulent wall-skin friction.

The work was supported by EPSRC Research Grants (GR/J06917, GR/J16114, GR/K38328, GR/K82734, and GR/L90989) and EPSRC Visiting Research Fellowship Grants (GR/J77184, GR/J95317 and GR/K27780). The support from the Leverhulme Trust (RF&G/10988) is also acknowledged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhavan, R., Kamm, R. D., and Shapiro, A. H. (1991). An investigation of transition to turbulence in bounded oscillatory stokes flows, Part 1. Experiments. J. Fluid Mech. 225: 395–422.

    Article  Google Scholar 

  • Anders, J. B. (1990). Outer-layer manipulators for turbulent drag reduction. In Bushnell, D. M, and Hefner, J. N., eds., Viscous Drag Reduction in Boundary Layers, Progress in Astronautics and Aeronautics. Washington, DC: AIAA. 123: 263–284.

    Google Scholar 

  • Antonia, R.A. (1981). Conditional sampling in turbulence measurement. Ann. Rev. Fluid Mech. 13: 13 1156.

    Google Scholar 

  • Bacher, E. V., and Smith, C. R. (1985). A combined visualisation-anemometry study of the turbulent drag reducing mechanisms of triangular micro-groove surface modification. AIAA Paper 85–0548.

    Google Scholar 

  • Bandyopadhyay, P. R. (1986). Review — Mean flow in turbulent boundary layers disturbed to alter skin friction. Trans. ASME I: J. Fluids Engng. 108 (2): 127–140.

    Google Scholar 

  • Baron, A., and Quadrio, M. (1993). Some preliminary results on the influence of riblets on the structure of a turbulent boundary layer. Int. J. Heat Fluid Flow 14 (3): 223–230.

    Article  Google Scholar 

  • Baron, A., and Quadrio, M. (1996). Turbulent drag reduction by spanwise wall oscillations. Appl. Sci. Res. 55: 311–326.

    Article  MATH  Google Scholar 

  • Baron, A, and Quadrio, M. (1997). Turbulent boundary layer over riblets: conditional analysis of ejection-like events. Intl. J. Heat Fluid Flow. 18 (2): 188–196.

    Article  MathSciNet  Google Scholar 

  • Baron, A., Quadrio, M., and Vigevano, L. (1993). On the boundary layer/riblets interaction mechanisms and the prediction of turbulent drag reduction. Int. J. Heat Fluid Flow 14 (4): 324–332.

    Article  Google Scholar 

  • Bechert, D. W. (1997). Biological surfaces and their technological application–laboratory and flight experiments on drag reduction and separation control. AIAA Paper 97–1960.

    Google Scholar 

  • Bechert, D. W., and Bartenwerfer, M. (1989). The viscous flow on surfaces with longitudinal ribs. J. Fluid Mech. 206: 105–129.

    Article  Google Scholar 

  • Bechert, D. W., Bartenwerfer, M., Hoppe, G., and Reif, W.-E. (1986). Drag reduction mechanisms derived from shark skin. In Proc. 15 th Congress, International Council of the Aeronautical Sciences. London. Paper 86–1. 8. 3.

    Google Scholar 

  • Bechert, D. W., Bruse, M., Hage, W., van der Hoeven, J. G. T., and Hoppe, G. (1997). Experiments on drag-reducing surfaces and their optimisation with an adjustable geometry. J. Fluid Mech. 338: 59–87.

    Article  Google Scholar 

  • Bechert, D. W., Hoppe, G., and Reif, W.-E. (1985). On the drag reduction of the shark skin. AIAA Paper 85–0548.

    Google Scholar 

  • Bechert, D. W., Hoppe, G., van der Hoeven, J. G. T., and Makris, R. (1992). The Berlin oil channel for drag reduction research. Exp. Fluids 12: 251–260.

    Google Scholar 

  • Benjamin, T. B, (1964). Fluid flow with flexible boundaries. In Görtler, H., ed., Proc. 11“’ Int. Cong. on Application of Mathematics. Berlin: Springer. 109–128.

    Google Scholar 

  • Blackwelder, R. F., and Kaplan, R. E. (1976). On the wall structure of the turbulent boundary layer. J. Fluid Mech. 76: 89–112.

    Article  Google Scholar 

  • Blick, E. F., and Walters, R. R. (1968). Turbulent boundary layer characteristics of compliant surfaces. J. Aircraft. 5: 11–16.

    Article  Google Scholar 

  • Blick, E. F., Walters, R. R., Smith, R., and Chu, H. (1969). Compliant coating skin friction experiments. AIAA Paper 69–165.

    Google Scholar 

  • Boiko, A. V., Kozlov, V. V., Scherbakov, V. A., and Syzrantsev, V. V. (1997). Transition control by riblets in a swept wing boundary layer with an embedded streamwise vortex. European J. Mechanics B 16 (4): 465–482.

    MATH  MathSciNet  Google Scholar 

  • Bradshaw, P., and Pontikos, N. S. (1985). Measurements in a turbulent boundary layer on an infinite swept wing. J. Fluid Mech. 159: 105–130.

    Article  Google Scholar 

  • Brown, G. L., and Roshko, A. (1974). On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64: 775–816.

    Article  Google Scholar 

  • Bruse, M., Bechert, D. W., van der Hoeven, J. G. T., Hage, W., and Hoppe, G. (1993). Experiments with conventional and novel adjustable drag-reducing surfaces. In So, R. M. C., Speziale, C. G., and Launder, B. E., eds., Near-Wall Turbulent Flows. Amsterdam: Elsevier. 719–738.

    Google Scholar 

  • Bushnell, D. M., and Hefner, J. N. (1990). Viscous Drag Reduction in Boundary Layers. Washington, DC: AIAA.

    Book  Google Scholar 

  • Bushnell, D. M., and McGinley, C. B. (1989). Turbulent control in wall flows. Annu. Rev. Fluid Mech. 21: 1–20.

    Google Scholar 

  • Carlson, H. A., and Lumley, J. L. (1996). Active control in the turbulent boundary layer of a minimal flow unit. J. Fluid Mech. 329: 341–371.

    Article  MATH  Google Scholar 

  • Carpenter, P. W. (1993). Optimisation of multiple-panel compliant walls for delay of laminar-turbulent transition. AIAA J. 31: 1187–1188.

    Article  Google Scholar 

  • Choi, H., Moin, P., and Kim, J. (1993). Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 255: 503–539.

    Article  MATH  MathSciNet  Google Scholar 

  • Choi, H., Moin, P, and Kim, J. (1994). Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262: 75–110.

    Article  MATH  Google Scholar 

  • Choi, K.-S. (1987). On physical mechanisms of turbulent drag reduction using riblets. In Hirata, M., and Kasagi, N., eds., Transport Phenomena in Turbulent Flows. New York: Hemisphere. 185–198.

    Google Scholar 

  • Choi, K.-S. (1989). Near-wall structure of turbulent boundary layer with riblets. J. Fluid Mech. 208:417–458.

    Google Scholar 

  • Choi, K.-S. (1990). Effects of longitudinal pressure gradients on turbulent drag reduction with riblets. In Coustols, E., ed., Turbulence Control by Passive Means. Dordrecht: Kluwer. 109–121.

    Chapter  Google Scholar 

  • Choi, K.-S. (1991). Recent Developments in Turbulence Management. Dordrecht: Kluwer.

    Book  MATH  Google Scholar 

  • Choi, K.-S. (1993). Breakdown of the Reynolds analogy over drag-reducing riblets surface. Appl. Sci. Res. 51: 149–155.

    Google Scholar 

  • Choi, K.-S. (1996). Turbulent drag reduction strategies. In Choi, K.-S., Prasad, K. K., and Truong, T. V., eds., Emerging Techniques in Drag Reduction. London: MEP. 77–98.

    Google Scholar 

  • Choi, K.-S., DeBisschop, J.-R., and Clayton, B. R. (1998). Turbulent boundary-layer control by means of spanwise-wall oscillation. AIAA J. 36 (7): 1157–1163.

    Article  Google Scholar 

  • Choi, K.-S., and Graham, M. (1998). Drag reduction of turbulent pipe flows by circular-wall oscillation. Phys, Fluids. 10 (1): 7–9.

    Article  Google Scholar 

  • Choi, K.-S., and Hamid, S. (1991). Heat transfer study of riblets. In Choi, K.-S., ed., Recent Developments in Turbulence Management. Dordrecht: Kluwer. 25–41.

    Chapter  Google Scholar 

  • Choi, K.-S., and Orchard, D. M. (1997). Turbulence management using riblets for heat and momentum transfer. Int. J. Exp. Thermal Fluid Sci. 15 (2): 109–124.

    Article  Google Scholar 

  • Choi, K.-S. Pearcey, H. H., and Savill, A. M., (1987). Test of drag reducing riblets on a one-third scale racing yacht. Proc. Int. Conf. On Turbulent Drag Reduction by Passive Means, London.

    Google Scholar 

  • Choi, K.-S., Prasad, K. K., and Troung, ‘f. V. (1996). Emerging Techniques in Drag Reduction. London: MEP.

    Google Scholar 

  • Choi, K.-S., Yang, X., Clayton, B. R., Glover, E. J., Atlar, M., Semenov, B. N., and Kulik, V. M. (1997). Turbulent drag reduction using compliant surfaces. Proc. Royal Society. A453: 2229–2240.

    Article  MATH  Google Scholar 

  • Chu, D. C., and Karniadakis, G. E. M. (1993). A direct simulation of laminar and turbulent flow over riblet-mounted surfaces. J. Fluid Mech. 250: 1–42.

    Article  Google Scholar 

  • Chung, K. H., and Merrill, E. W. (1984). Drag reduction by compliant surfaces measured on rotating discs. Proc. Compliant Coating Drag Reduction Program Review Meeting. Washington, DC: Office of Naval Research.

    Google Scholar 

  • Clark, D. G. (1990). Multiple light-plane flow visualisation of the structure within riblets. In Coustols, E., ed., Turbulence Control by Passive Means. Dordrecht: Kluwer. 79–96.

    Chapter  Google Scholar 

  • Cooper, A. J., and Carpenter, P. W. (1997). Stability of rotating-disc boundary-layer flow over a compliant wall. Part 1. Type I and II Instabilities. J. Fluid Mech. 350: 231–259.

    Article  MATH  MathSciNet  Google Scholar 

  • Coustols, E. (1990). Turbulence control by passive means. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Coustols, E. (1996). Riblets: Main known and unknown features. In Choi, K.-S., Prasad, K. K., and Truong, T. V., eds., Emerging Techniques in Drag Reduction. London: MEP. 3–43.

    Google Scholar 

  • Coustols, E., and Cousteix, J. (1988). Turbulent boundary layer manipulation in zero pressure gradient. 16`“ Congress of the Int. Council of the Aeronautical Sciences, Jerusalem.

    Google Scholar 

  • Coustols, E., and Cousteix, J. (1994). Performance of riblets in the supersonic regime. AIAA J. 32(2):431433.

    Google Scholar 

  • Coustols, E., and Savill, M. (1992). Turbulent skin-friction reduction by active and passive means. AGARD R-786:8. 1–8. 80.

    Google Scholar 

  • Davies, C., and Carpenter, P. W. (1997). Numerical simulation of the evolution of Tollmien-Schlichting waves. J. Fluid Mech. 335: 361–392.

    Article  MATH  MathSciNet  Google Scholar 

  • Dean, R. B. (1976). A single formula for the complete velocity profile in a turbulent boundary layer. J. Fluids Eng. 98 (4): 723–727.

    Article  MathSciNet  Google Scholar 

  • DeBisschop, J. R., and Nieuwstadt, F. T. M. (1996). Turbulent boundary layer in an adverse pressure gradient. AIM J. 34 (5): 932–937.

    Google Scholar 

  • Dimotakis, P. E., Lye, R. C., and Papantoniou, D. Z. (1982). In Van Dyke, M., ed., Album of Fluid Motion. Stanford: Parabolic Press.

    Google Scholar 

  • Dixon, A. E., Lucey, A. D., and Carpenter, P. W. (1994). Optimisation of viscoelastic compliant walls for transition delay. AIAA J. 32: 256–267.

    Article  MATH  Google Scholar 

  • Djenidi, L., Anselmet, F., Liandrat, J., and Fulachier, L. (1994). Boundary layer over riblets. Phys. Fluids 6 (9): 2993–2999.

    Article  Google Scholar 

  • Durst, F., Jovanovic, J., and Sender, J. (1995). LDA measurements in the near-wall region of a turbulent pipe flow. J. Fluid Mech. 295: 305–335.

    Google Scholar 

  • Falco, R. E. (1991). A coherent structure model of the turbulent boundary layer and its stability to predict Reynolds number dependence. Phil. Trans. Royal Soc. London A336: 103–130.

    MATH  Google Scholar 

  • Falco, R. E., and Chu, C. C. (1984). Measurements of local skin-friction reduction on elastic compliant surfaces. Proc. Compliant Coating Drag Reduction Program Review Meeting. Washington, DC: Office of Naval Research.

    Google Scholar 

  • Ferry, J. D. (1961). Viscoelastic Properties of Polymers. New York: Wiley.

    Google Scholar 

  • Gad-el-Hak, M. (1986). Boundary layer interactions with compliant coatings: an overview. Appl. Mech. Rev. 3: 511–524.

    Article  Google Scholar 

  • Gad-el-Hak, M., Blackwelder, R. F., and Riley, J. J. (1984). On the interaction of compliant coatings with boundary-layer flows. J. Fluid Mech. 140: 257–280.

    Article  Google Scholar 

  • Gallagher, J. A., and Thomas, A. S. W. (1984). Turbulent boundary layer characteristics over streamwise grooves. AIAA Paper 84–2185.

    Google Scholar 

  • Gaster, M. (1988). Is the dolphin a red herring? In Liepman, H. W., and Narasimha, R., eds., Turbulence Management and Relaminarisation. Berlin: Springer-Verlag. 285–304.

    Chapter  Google Scholar 

  • Gaudet, L. (1987). An assessment of the drag reduction properties of riblets and the penalties of off design conditions. RAE Tech. Memo. Aero. 2113.

    Google Scholar 

  • Grant, H. L. (1958). The large eddies of turbulent motion. J. Fluid Mech. 4: 149–190.

    Article  Google Scholar 

  • Grek, G. R., Kozlov, V. V., and Titarenko, S. V. (1996). Experimental study of the influence of riblets on transition. J. Fluid Mech. 315: 31–49.

    Article  Google Scholar 

  • Head, M. R., and Bandyopadhyay, P. (1981). New aspects of turbulent boundary layer structure, J. Fluid Mech. 107: 297–338.

    Article  Google Scholar 

  • Hefner, J. N., and Weinstein, L. M. (1976). Re-examination of compliant wall experiments in air with water substrates. J. Spacecr. Rocket. 13:502–503.

    Google Scholar 

  • Hooshmad, D., Youngs, R. A., Wallace, J. M., and Balint, J.-L. (1983). An experimental study of changes in the structure of a turbulent boundary layer due to surface geometry changes. AIAA Paper 83–0230.

    Google Scholar 

  • Hough, G. R. (1980). Viscous Flow Drag Reduction. Washington, DC: AIAA.

    Book  Google Scholar 

  • Jimenez, J., and Pinelli, A. (1997). Wall turbulence: How it works and how to damp it. AIAA Paper 972112.

    Google Scholar 

  • Jimenez, J., and Pinelli, A. (1998). The role of coherent structure interactions in the regeneration of wall turbulence. Proc 7` h European Turbulence Conf. Saint Jean Cap Ferrat, France.

    Google Scholar 

  • Jung, W. J., Mangiavacchi, N., and Akhavan, R. (1992). Suppression of turbulence in wall-hounded flows by high frequency spanwise oscillations. Phys. Fluids. A4 (8): 1605–1607.

    Article  Google Scholar 

  • Kim, H. T., Kline, S. J., and Reynolds, W. C. (1971). The production of turbulence near a smooth wall in a turbulent boundary layer. J. Fluid Mech. 50 (1): 133–160.

    Article  Google Scholar 

  • Kim, J. (1983). On the structure of wall-bounded turbulent flows. Phys. Fluids. 26 (8): 2088–2097.

    Article  MATH  Google Scholar 

  • Kim, J. (1985). Turbulent structures associated with the bursting event. Phys. Fluids. 28(1):52–58.

    Google Scholar 

  • Kim, J. and Moin, P. (1986). The structure of the vorticity field in turbulent channel flow, Part 2. Study of ensemble-averaged fields. J. Fluid Mech. 162:339–363.

    Google Scholar 

  • Kim, J., Moin, P., and Moser, R. (1987). Turbulent statistics in fully-developed channel flow at low Reynolds number. J. Fluid Mech. 177:133–166.

    Google Scholar 

  • Kline, S. J., Reynolds, W. C., Schraub, F. A., and Runstadler, P. W. (1967). The structure of turbulent boundary layers. J. Fluid Mech. 30 (4): 741–773.

    Article  Google Scholar 

  • Kozlov, V. V. (1997). Effect of riblets on flow-structures at laminar-turbulent transition and simulation of their influence on turbulent boundary layer. Proc. JO“ European Drag Reduction Meeting, Berlin.

    Google Scholar 

  • Kramer, M. O. (1957). Boundary layer stabilisation by distributed damping. J. Aero. Sci. 24: 459–460.

    Google Scholar 

  • Kramer, M. O. (1960). Boundary layer stabilisation by distributed damping. J. Am. Soc. Nay. Engr. 72: 25–33.

    Google Scholar 

  • Kramer, M. O. (1961). The dolphin’s secret. J. Am. Soc. Nay. Engr. 73: 103–107.

    Google Scholar 

  • Kramer, M. O. (1962). Boundary layer stabilisation by distributed damping. J. Am. Soc. Nay. Engr. 74: 341–348.

    Google Scholar 

  • Kramer, M. O. (1965). Hydrodynamics of the dolphin. In Chow, V. T., ed., Advances in Hydroscience. New York: Academic. 2: 111–130.

    Google Scholar 

  • Kravchenko, A. G., Choi, H., and Moin, P. (1993). On the relationship of near-wall streamwise vortices to wall skin friction in turbulent boundary layers. Phys. Fluids. A5 (12): 3307–3309.

    Article  Google Scholar 

  • Kulik, V. M., Poguda, 1. S., and Semenov, B. N. (1991). Experimental investigation of one-layer viscoelastic coatings action on turbulent friction and wall pressure pulsations. In Choi, K.-S., ed., Recent Developments in Turbulence Management. Dordrecht: Kluwer. 263–289.

    Chapter  Google Scholar 

  • Kulik, V. M., and Semenov, B. N. (1996). The measurement of dynamic properties of viscoelastic materials for turbulent drag reduction. In Choi, K.-S., Prasad, K. K., and Truong, T. V., eds., Emerging Techniques in Drag Reduction. London: MEP. 207–217.

    Google Scholar 

  • Laadhari, F., Skandaji, L., and Morel, R. (1994). Turbulence reduction in a boundary layer by a local spanwise oscillating surface. Phys. Fluids. A6 (10): 3218–3220.

    Article  Google Scholar 

  • Lee, T., Fisher, M., and Schwarz, W. H. (1993). Investigation of the stable interaction of a passive compliant surface with a turbulent boundary layer. J. Fluid Mech. 257: 373–401.

    Article  Google Scholar 

  • Lindemann, A. M. (1985). Turbulent Reynolds analogy factors for nonplanar surface microgeometries. J. Spacecraft. 22 (5): 581–582.

    Article  Google Scholar 

  • Looney, W. R., and Blick, E. F. (1966). Skin friction coefficients of compliant surfaces in turbulent flow. J. Spacecr. Rocket. 3: 1562–1564.

    Article  Google Scholar 

  • Lu. S. S., and Willmarth, W. W. (1973). Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J. Fluid Mech. 60: 481–511.

    Article  Google Scholar 

  • Lucey, A. D., and Carpenter, P. W. (1992). A numerical simulation of the interaction of a compliant wall and inviscid flow. J. Fluid Mech. 234: 121–146.

    Article  MATH  Google Scholar 

  • Luchini, P., Manzo, P., and Pozzi, A. (1991). Resistance of a grooved surface to parallel flow and cross-flow. J. Fluid Mech. 228: 87–109.

    MATH  Google Scholar 

  • Luchini, P., Manzo, F., and Pozzi, A. (1992). Viscous eddies over a grooved surface computed by a gaussian-integration galerkin boundary-element method. AIAA J. 30 (8): 2168–2170.

    Article  Google Scholar 

  • Luchini, P., and Pozzi, A. (1997). Computation of three-dimensional stokes flow over complicated surfaces (3D riblets) using a boundary independent grid and local corrections. 10` h European Drag Reduction Meeting, Berlin.

    Google Scholar 

  • Luchini, P., and Trombetta, G. (1995). Effects of riblets upon flow stability. Appl. Sci. Res. 54: 313–321.

    Article  MATH  Google Scholar 

  • Lumley, J. L. (1973). Drag reduction in turbulent flow by polymer additives. J. Polymer Sci. D: Macro-mol. Rev. 7:263–290.

    Google Scholar 

  • McLean, J. D., George-Falvy, D. N., and Sullivan, P. P. (1987). Flight-test of turbulent skin-friction reduction by riblets. Proc. Intl Conf Turbulent Drag Reduction by Passive Means,London.

    Google Scholar 

  • McMichael, J. M., Klebanoff, P. S., and Mease,’ N. E. (1980). Experimental investigation of drag on a compliant surface. In Hough, G. R., ed., Viscous Flow Drag Reduction. Washington, DC: AIAA. 410–438.

    Google Scholar 

  • Moin, P., and Kim, J. (1982). Numerical investigation of turbulent channel flow. J. Fluid Mech. 118:341377.

    Google Scholar 

  • Moin, P., and Kim, J. (1985). The structure of the vorticity field in turbulent channel flow, Part 1. Analysis of instantaneous fields and statistical correlations. J. Fluid Mech. 155: 441–464.

    Article  Google Scholar 

  • Nieuwstadt, F. T. M., Wolthers, W., Leijdens, H., Prasad, K. K., and Schwarz-van Manen, A. D. (1991). Some further experiments on riblets surface in a towing tank. In Choi, K.-S., ed., Recent Developments in Turbulence Management. Dordrecht: Kluwer. 93–112.

    Google Scholar 

  • Offen, G. R., and Kline, S. J. (1975). A proposed model of the bursting process in turbulent boundary layers. J. Fluid Mech. 70: 209.

    Article  Google Scholar 

  • Orlandi, P. (1997). Helicity fluctuations and turbulent energy production in rotating and non-rotating pipes. Phys. Fluids 9 (7): 2045–2056.

    Article  MATH  MathSciNet  Google Scholar 

  • Orlandi, P., and Fatica, M. (1997). Direct simulations of turbulent flow in a pipe rotating about its axis. J. Fluid Mech. 343: 43–72.

    Article  MATH  Google Scholar 

  • Orlandi, P., and Jimenez, J. (1994). On the generation of turbulent wall friction. Phys. Fluids. A6(2): 634641.

    Google Scholar 

  • Pal, S., Deutsch, S and Merkle, C. L. (1989). A comparison of shear stress fluctuation statistics between microbubble modified and polymer modified turbulent boundary layers. Phys. Fluids A1(8): 13601362.

    Google Scholar 

  • Park, S.-R., and Wallace, J. M. (1993). Flow field alteration and viscous drag reduction by riblets in a turbulent boundary layer. In So, R. M. C., Speziale, C. G., and Launder, B. E., eds., Near-Wall Turbulent Flows. Amsterdam: Elsevier. 749–760.

    Google Scholar 

  • Payne, F. R., and Lumley, J. L. (1967). Large eddy structure of the turbulent wake behind a circular cylinder. Phys. Fluids S-10: 194–196.

    Google Scholar 

  • Pollard, A., Savill, A. M., Tullis, S., and Wang, X. (1996). Simulating turbulent flow over thin element and flat valley V-shaped riblets. AIAA. J. 34 (11): 2261–2268.

    Article  MATH  Google Scholar 

  • Prasad, K. K. (1993). Further Developments in Turbulence Management. Dordrecht: Kluwer.

    Book  MATH  Google Scholar 

  • Pulles, C. J. A. (1988). Drag Reduction of Turbulent Boundary Layers by Means of Grooved Surfaces. Ph.D. thesis, Technical University of Eindhoven.

    Google Scholar 

  • Robinson, S. K. (1990). A review of vortex structures and associated coherent motions in turbulent boundary layers. in Gyr, A., ed., Structure of Turbulence and Drag Reduction. Berlin: Springer-Verlag. 23–50.

    Chapter  Google Scholar 

  • Robinson, S. K. (1991). Coherent motions in the turbulent boundary layer. Ann. Rev. Fluid Mech. 23: 601–639.

    Google Scholar 

  • Sarpkaya, T. (1993). Coherent structures in oscillatory boundary layers. J. Fluid Mech. 253: 105–140.

    Article  Google Scholar 

  • Savill, D. M. (1990). Drag reduction by passive devices–A review of some recent development. In Gyr, A., ed., Structure of Turbulence and Drag Reduction. Berlin: Springer-Verlag. 429–465.

    Chapter  Google Scholar 

  • Schlichtirg, H. (1968). Boundary-LayerTheory. New York: McGraw Hill.

    Google Scholar 

  • Schoppa, W., and Hussain, F. (1998). A large-scale control strategy for drag reduction in turbulent boundary layers. Phys. Fluids 10 (5): 1049–1051.

    Article  MATH  MathSciNet  Google Scholar 

  • Schwarz, W. R., and Bradshaw, P. (1994). Turbulence structural changes for a three-dimensional turbulent boundary layer in a 30“ bend. J. Fluid Mech. 272: 183–209.

    Article  Google Scholar 

  • Schwarz-van Manen, A. D. (1992). Coherent Structure over Grooved Surfaces. Ph.D. Thesis, Technical University of Eindhoven.

    Google Scholar 

  • Semenov, B. N. (1991). On conditions of modelling and choice of viscoelastic coatings for drag reduction. in Choi, K.-S., ed., Recent Developments in Turbulence Management. Dordrecht: Kluwer. 241262.

    Google Scholar 

  • Sherman, F. S. (1990). Viscous flow. New York: McGraw-Hill. 137–140.

    Google Scholar 

  • Smith, C. R., and Metzler, S. P. (1983). The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. J. Fluid Mech. 129: 27–54.

    Article  Google Scholar 

  • Squire, L. C., and Savill, A. M. (1987). Some experiences of riblets at transonic speeds. Proc. Intl Conf. Turbulent Drag Reduction by Passive MeansLondon.

    Google Scholar 

  • Starling, I., and Choi, K.-S. (1997). Non-linear laminar-turbulent transition over riblets. Proc. Laminar flow workshop, Queen Mary and Westfield College, London.

    Google Scholar 

  • Sternberg, J. (1962). A theory for the viscous sublayer of a turbulent flow. J. Fluid Mech. 13: 241–271.

    Article  MATH  Google Scholar 

  • Suzuki, Y., and Kasagi, N. (1994). Turbulent drag reduction mechanism above a riblet surface. AIAA J. 32: 1781–1790.

    Article  Google Scholar 

  • Tardu, S. F. (1995). Coherent structure and riblets. Appl. Sc. Res. 54 (4): 349–385.

    Article  MATH  Google Scholar 

  • Taylor, T. D. (1983). Experimental and calculational results for compliant surface drag reduction. In Proc. Compliant Coating Drag Reduction Program Review Meeting. ‘Washington, DC: Office of Naval Research.

    Google Scholar 

  • Townsend, A. A. (1976). The Structure of Turbulent Shear Flow. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Virk, P. S. (1975). Drag reduction fundamentals. A1ChEJ. 21: 625–656.

    Google Scholar 

  • Vukoslavcevis, P., Wallace, J. M., and Balint, J.-L. (1991). Viscous drag reduction using streamwise aligned riblets. AIAA J. 30 (4): 1119–1122.

    Article  Google Scholar 

  • Wallace, J. M. (1982). On the structure of bounded turbulent shear flow: a personal view. In Chung, T. J., and Karr, G. R., eds., Development in Theoretical and Applied Mechanics, Xl. University of Alabama, Huntsville, Alabama.

    Google Scholar 

  • Wallace, J. M., and Balint, J.-L. (1987). Viscous drag reduction using streamwise aligned riblets: Surveys and new results. In Liepmann, H. W., and Narasimha, R., eds., Turbulence Management and Relaminarisation. Berlin: Springer-Verlag. 133–147.

    Google Scholar 

  • Wallace, J. M., Eckelmann, H., and Brodkey, R. S. (1972), The wall region in turbulent shear flow. J. Fluid Mech. 54 (1): 39–48.

    Article  Google Scholar 

  • Walsh, M. J. (1980). Drag characteristics of V-groove and transverse curvature riblets. In Hough, G. R., ed., Viscous Drag Reduction. Washington, DC: AIAA. 168–184.

    Google Scholar 

  • Walsh, M. J. (1982). Turbulent boundary layer drag reduction using riblets. AIAA Paper 82–0169.

    Google Scholar 

  • Walsh, M. J. (1990). Riblets. In Bushnell, D. M., and Hefner, J. N., eds., Viscous Drag Reduction in Boundary Layers. Washington, DC: AIAA. 203–261.

    Google Scholar 

  • Walsh, M. J., and Lindeman, A.M. (1984). Optimisation and application of riblets for turbulent drag reduction. AIAA Paper 84–0347.

    Google Scholar 

  • Walsh, M. J., and Weinstein, L. M. (1979). Drag and heat transfer characteristics of small longitudinally ribbed surfaces. AIAA J. 17 (7): 770–771.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this chapter

Cite this chapter

Choi, KS. (2001). Turbulent Drag-Reduction Mechanisms: Strategies for Turbulence Management. In: Soldati, A., Monti, R. (eds) Turbulence Structure and Modulation. International Centre for Mechanical Sciences, vol 415. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2574-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2574-8_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83339-1

  • Online ISBN: 978-3-7091-2574-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics