Skip to main content

Port-Hamiltonian Systems: Network Modeling and Control of Nonlinear Physical Systems

  • Chapter
Advanced Dynamics and Control of Structures and Machines

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 444))

Abstract

It is shown how port-based modeling of lumped-parameter complex physical systems (multi-body systems, electrical circuits, electromechanical systems,..) naturally leads to a geometrically defined class of systems, called port-Hamiltonian systems. These are Hamiltonian systems defined with respect to a power-conserving geometric structure capturing the basic interconnection laws, and a Hamiltonian function given by the total stored energy. The structural properties of port-Hamiltonian systems are discussed, in particular the existence of Casimir functions and its implications for stability and stabilization. Furthermore it is shown how passivity-based control results from interconnecting the plant port-Hamiltonian system with a controller port-Hamiltonian system, leading to a closed-loop port-Hamiltonian system. Finally, extensions to the distributed-parameter case are provided by formulating boundary control systems as infinite-dimensional port-Hamiltonian systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • R.A. Abraham and J.E. Marsden. Foundations of Mechanics. Benjamin/Cummings, Reading, MA, 2nd edition, 1978.

    Google Scholar 

  • A. Bloch, N. Leonard, and J.E. Marsden. Matching and stabilization by the method of controlled Lagrangians. In 37th IEEE Conf. on Decision and Control, pages 1446–1451, Tampa, FL, 1998.

    Google Scholar 

  • A.M. Bloch and P.E. Crouch. Representations of Dirac structures on vector spaces and nonlinear LC circuits. In G. Ferreyra, R. Gardner, H. Hermes, and H. Sussmann, editors, Symposia in Pure Mathematics, Differential Geometry and Control Theory, volume 64, pages 103–117. AMS, 1999.

    Google Scholar 

  • P.C. Breedveld. Physical systems theory in terms of bond graphs. PhD thesis, University of Twente, Faculty of Electrical Engineering, 1984.

    Google Scholar 

  • R.W. Brockett. Control theory and analytical mechanics. In C. Martin and R. Hermann, editors, Geometric Control Theory, volume VII of Lie Groups: History, Frontiers and Applications, pages 1–46. Math. Sci. Press, Brookline, 1977.

    Google Scholar 

  • T.J. Courant. Dirac manifolds. Trans. American Math. Soc., 319: 631–661, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  • P.E. Crouch and A.J. van der Schaft. Variational and Hamiltonian Control Systems. Number 101 in Lect. Notes in Control and Inf. Sciences. Springer, Berlin, 1987.

    Google Scholar 

  • M. Dalsmo and A.J. van der Schaft. On representations and integrability of mathematical structures in energy-conserving physical systems. SIAM J. Control and Optimization, 37 (1): 54–91, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  • I. Dorfman. Dirac Structures and Integrability of Nonlinear Evolution Equations. John Wiley, Chichester, 1993.

    Google Scholar 

  • H.O. Fattorini. Boundary control systems. SIAM J. Control, 6: 349–385, 1968.

    Article  MATH  MathSciNet  Google Scholar 

  • K. Fujimoto and T. Sugie. Stabilization of a class of Hamiltonian systems with nonholonomic constraints via canonical transformations. In Proc. European Control Conference ‘89, Karlsruhe, Sept. 1999.

    Google Scholar 

  • G. Golo, V. Talasila, and A.J. van der Schaft. Approximation of the telegrapher’s equations. In Proc. 41st IEEE Conf. Decision and Control, Las Vegas, Nevada, Dec. 2002a.

    Google Scholar 

  • G. Golo, V. Talasila, and A.J. van der Schaft. A Hamiltonian formulation of the Timoshenko beam. In Mechatronics 2002, pages 838–847, Enschede, June 2002b.

    Google Scholar 

  • G. Golo, A. van der Schaft, P.C. Breedveld, and B.M. Maschke. Hamiltonian formulation of bond graphs. In R. Johansson and A. Rantzer, editors, Nonlinear and Hybrid Systems in Automotive Control, pages 351–372. Springer, London, 2003a.

    Google Scholar 

  • G. Golo, A.J. van der Schaft, and S.Stramigioli. Hamiltonian formulation of planar beams. In A. Astolfi, F. Gordillo, and A.J. van der Schaft, editors, Proc. 2nd IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, pages 169–174, Sevilla, 2003b.

    Google Scholar 

  • D.J. Hill and P.J. Moylan. Stability of nonlinear dissipative systems. IEEE Trans. Aut. Contr., 21: 708–711, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  • R.S. Ingarden and A. Jamiolkowski. Classical Electrodynamics. PWN-Polish Sc. Publ., Elsevier, Warszawa, 1985.

    Google Scholar 

  • A. Isidori. Nonlinear Control Systems. Communications and Control Engineering Series. Springer, London, 3rd edition, 1995.

    Google Scholar 

  • J.E. Marsden and T.S. Ratiu. Introduction to Mechanics and Symmetry. Number 17 in Texts in Applied Mathematics. Springer, New York, 1994.

    Google Scholar 

  • B. Maschke, R. Ortega, and A.J. van der Schaft. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Transactions on Automatic Control, 45: 1498–1502, 2000.

    Article  MATH  Google Scholar 

  • B.M. Maschke, C. Bidard, and A.J. van der Schaft. Screw-vector bond graphs for the kinestatic and dynamic modeling of multibody systems. In Proc. ASME Int. Mech. Engg. Congress, volume 55, pages 637–644, Chicago, U.S.A., 1994.

    Google Scholar 

  • B.M. Maschke, R. Ortega, A.J. van der Schaft, and G. Escobar. An energy-based derivation of Lyapunov functions for forced systems with application to stabilizing control. In Proc. 14th IFAC World Congress, volume E, pages 409–414, Beijing, 1999.

    Google Scholar 

  • B.M. Maschke and A.J. van der Schaft. Port-controlled Hamiltonian systems: Modelling origins and system-theoretic properties. In Proc. 2nd IFAC NOLCOS, pages 282–288, Bordeaux, 1992.

    Google Scholar 

  • B.M. Maschke and A.J. van der Schaft. System-theoretic properties of port-controlled Hamiltonian systems. In Systems and Networks: Mathematical Theory and Applications, volume II, pages 349–352. Akademie-Verlag, Berlin, 1994.

    Google Scholar 

  • B.M. Maschke and A.J. van der Schaft. Interconnection of systems: the network paradigm. In Proc. of the IEEE Int. Conf. on Decision and Control, CDC’96, pages 207–212, Kobe, Japan, Dec. 1996.

    Google Scholar 

  • B.M. Maschke and A.J. van der Schaft. Interconnected mechanical systems, part II: The dynamics of spatial mechanical networks. In A. Astolfi, D.J.N. Limebeer, C. Melchiorri, A. Tornambe, and R.B. Vinter, editors, Modelling and Control of Mechanical Systems, pages 17–30. Imperial College Press, London, 1997.

    Google Scholar 

  • B.M. Maschke and A.J. van der Schaft. Hamiltonian representation of distributed parameter systems with boundary energy flow. In A. Isidori, F. Lamnabhi-Lagarrigue, and W. Respondek, editors, Nonlinear Control in the Year 2000,number 258 in Lect. Notes Control and Inf. Sciences, pages 137–142. Springer, 2000a.

    Google Scholar 

  • B.M. Maschke and A.J. van der Schaft. Port controlled Hamiltonian representation of distributed parameter systems. In N.E. Leonard and R. Ortega, editors, IFAC Workshop on Lagrangian and Hamiltonian methods for nonlinear control, pages 2838. Princeton University, 2000b.

    Google Scholar 

  • B.M. Maschke, A.J. van der Schaft, and P.C. Breedveld. An intrinsic Hamiltonian formulation of network dynamics: Non-standard poisson structures and gyrators. Journal of the Franklin Institute, 329 (5): 923–966, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  • B.M. Maschke, A.J. van der Schaft, and P.C. Breedveld. An intrinsic Hamiltonian formulation of the dynamics of LC-circuits. IEEE Trans. Circ. and Syst., 42: 73–82, 1995.

    Article  MATH  Google Scholar 

  • J.I. Neimark and N.A. Fufaev. Dynamics of nonholonomic systems. Translations of Mathematical Monographs, American Mathematical Society, 33, 1972.

    Google Scholar 

  • H. Nijmeijer and A. J. van der Schaft. Nonlinear Dynamical Control Systems. Springer, New York, 1990.

    Book  MATH  Google Scholar 

  • P.J. Olver. Applications of Lie Groups to Differential Equations. Springer, 2nd edition, 1993.

    Google Scholar 

  • R. Ortega, A. Loria, P.J. Nicklasson, and H. Sira-Ramirez. Passivity-based Control of Euler-Lagrange Systems. Springer, London, 1998.

    Book  Google Scholar 

  • R. Ortega, A.J. van der Schaft, I. Mareels, and B.M. Maschke. Putting energy back in control. Control Systems Magazine, 21: 18–33, 2001.

    Article  Google Scholar 

  • R. Ortega, A.J. van der Schaft, B.M. Maschke, and G. Escobar. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica, 38: 585–596, 2002.

    Article  MATH  Google Scholar 

  • H. M. Paynter. Analysis and Design of Engineering Systems. M.I.T. Press, MA, 1960.

    Google Scholar 

  • H. Rodriguez, A.J. van der Schaft, and R. Ortega. On stabilization of nonlinear distributed parameter port-controlled Hamiltonian systems via energy-shaping. In Proc. 40th IEEE Conf. on Decision and Control, pages 131–136, Orlando, Florida, 2001.

    Google Scholar 

  • K. Schlacher and A. Kugi. Control of mechanical structures by piezoelectric actuators and sensors. In D. Aeyels, F. Lamnabhi-Lagarrigue, and A.J. van der Schaft, editors, Stability and Stabilization of Nonlinear Systems, volume 246 of Lecture Notes in Control and Information Sciences, pages 275–292. Springer, London, 1999.

    Google Scholar 

  • S. Stramigioli. From Differentiable Manifolds to Interactive Robot Control. PhD thesis, University of Delft, Dec. 1998.

    MATH  Google Scholar 

  • S. Stramigioli, B.M. Maschke, and C. Bidard. A Hamiltonian formulation of the dynamics of spatial mechanism using Lie groups and screw theory. In Proc. (to appear) Symposium Commemorating the Legacy, Work and Life of Sir R.S. Ball, J. Duffy and H. Lipkin organizers, University of Cambridge, Trinity College, Cambridge, U.K., July, 9–11 2000.

    Google Scholar 

  • M. Takegaki and S. Arimoto. A new feedback method for dynamic control of manipulators. Trans. ASME, J. Dyn. Systems, Meas. Control, 103: 119–125, 1981.

    Article  MATH  Google Scholar 

  • A.J. van der Schaft. System Theoretic Properties of Physical Systems. CWI Tract 3, CWI, Amsterdam, 1984.

    Google Scholar 

  • A.J. van der Schaft. Stabilization of Hamiltonian systems. Nonl. An. Th. Math. Appl., 10: 1021–1035, 1986.

    Article  MATH  Google Scholar 

  • A.J. van der Schaft. Interconnection and geometry. In J.W. Polderman and H.L. Trentelman, editors, From Intelligent Control to Behavioral Systems, pages 203–218, Groningen, 1999a.

    Google Scholar 

  • A.J. van der Schaft. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering Series. Springer, London, 2nd revised and enlarged edition, 1999b.

    Google Scholar 

  • A.J. van der Schaft, M. Dalsmo, and B.M. Maschke. Mathematical structures in the network representation of energy-conserving physical systems. In Proc. 35th IEEE Conf. on Decision and Control, pages 201–206, Kobe, Japan, 1996.

    Chapter  Google Scholar 

  • A.J. van der Schaft and B.M. Maschke. On the Hamiltonian formulation of nonholonomic mechanical systems. Rep. Math. Phys., 34: 225–233, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  • A.J. van der Schaft and B.M. Maschke. The Hamiltonian formulation of energy conserving physical systems with external ports. Archiv für Elektronik and Ãœbertragungstechnik, 49: 362–371, 1995a.

    Google Scholar 

  • A.J. van der Schaft and B.M. Maschke. Mathematical modeling of constrained Hamiltonian systems. In Proc. 3rd IFAC NOLCOS ‘85, pages 678–683, Tahoe City, CA, 1995b.

    Google Scholar 

  • A.J. van der Schaft and B.M Maschke. Interconnected mechanical systems, part I: geometry of interconnection and implicit Hamiltonian systems. In A. Astolfi, D.J.N Lime-beer, C. Melchiorri, A. Tornambè, and R.B. Vinter, editors, Modelling and Control of Mechanical Systems, pages 1–15. Imperial College Press, 1997.

    Google Scholar 

  • A.J. van der Schaft and B.M. Maschke. Fluid dynamical systems as Hamiltonian boundary control systems. In Proc. 40th IEEE Conf. on Decision and Control, pages 4497–4502, Orlando, Florida, 2001.

    Google Scholar 

  • A.J. van der Schaft and B.M Maschke. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics, 42: 166–194, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Weinstein. The local structure of poisson manifolds. J. Differential Geometry, 18: 523–557, 1983.

    MATH  Google Scholar 

  • J.C. Willems. Dissipative dynamical systems–part I: General theory. Archive for Rational Mechanics and Analysis, 45: 321–351, 1972.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Wien

About this chapter

Cite this chapter

van der Schaft, A.J. (2004). Port-Hamiltonian Systems: Network Modeling and Control of Nonlinear Physical Systems. In: Irschik, H., Schlacher, K. (eds) Advanced Dynamics and Control of Structures and Machines. International Centre for Mechanical Sciences, vol 444. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2774-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2774-2_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-22867-8

  • Online ISBN: 978-3-7091-2774-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics