Skip to main content

Pseudoprimes: A Survey of Recent Results

  • Chapter
Eurocode ’92

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 339))

  • 106 Accesses

Abstract

Public key cryptosystems require the use of large prime numbers, numbers with at least 256 bits (80 decimal digits), see for example [12]. One needs to generate these numbers as fast as possible. One way of dealing with this problem is the use of special primes built up using the converse of Fermat’s theorem [35, 14, 17, 29]. Another is to use sophisticated primality proving algorithms, that are fast but need a. careful implementation [13, 9].

Research partially supported by the Programme de Recherches Coordonnées (PRC) Maths-Info.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. ADAMS. Splitting of quartic polynomials. Math. Comp. 43,167 (July 1984), 329343.

    Google Scholar 

  2. W. ADAMS. Characterizing pseudoprimes for third order linear recurrences. Math. Comp. 48, 177 (Jan. 1987), 1–15.

    Article  MATH  MathSciNet  Google Scholar 

  3. W. ADAMS AND D. SHANKS. Strong primality tests that are not sufficient. Math. Comp. 39, 159 (July 1982), 255–300.

    Article  MATH  MathSciNet  Google Scholar 

  4. W. R. ALFORD, A. GRANVILLE, AND C. POMERANCE. There are infinitely many Carmichael numbers. Preprint, July 13th 1992.

    Google Scholar 

  5. F. ARNAULT. Le test de primauté de Rabin—Miller: un nombre composé qui le “passe”. Report 61, Université de Poitiers — Département (le Mathématiques, Nov. 1991.

    Google Scholar 

  6. F. ARNAULT. Carmichaels fortement pseudo-premiers. Manuscript, 1992.

    Google Scholar 

  7. S. ARNO. A note ou Perrin pseudoprimes. Math. Comp. 56, 193 (Jan. 1991), 371–376.

    Article  MATH  MathSciNet  Google Scholar 

  8. A. O. L. ATKIN. Probabilistic primality testing. In Analysis of Algorithms Seminar I (1992), P. Flajolet and P. Zimmermann, Eds., INRIA Research Report XXX. Summary by F. Morain.

    Google Scholar 

  9. A. O. L. ATKIN AND F. MORAIN. Elliptic curves and primality proving. Research Report 1256, INR.IA, Juin 1990. Submitted to Math. Comp.

    Google Scholar 

  10. R. SAILLIE AND S. S. WAGSTAFF, JR. Lucas pseudoprimes. Math. Comp. 35, 152 (Oct. 1980), 1391–1417.

    Article  MathSciNet  Google Scholar 

  11. R. BALASUBRAMANIAN AND M. R. MURTY. Elliptic pseudoprimes, II: Submitted for publication.

    Google Scholar 

  12. G. BRASSARD. Modern Cryptology, vol. 325 of Lect. Notes in Computer Science. Springer- Verlagq 1988.

    Google Scholar 

  13. H. COHEN AND A. K. LENSTRA. Implementation of a new primality test. Math. Comp. 48, 177 (1987), 103–121.

    Article  MATH  MathSciNet  Google Scholar 

  14. C. COUVREUR AND J. QUISQUATER. An introduction to fast generation of large prime numbers. Philips J. Research 37 (1982), 231–264.

    MathSciNet  Google Scholar 

  15. I. DAMGÂRD AND P. LANDROCK. Improved bounds for the Rabin primality test. In Proc. 3rd IMA conference on Coding and Cryptography (1991), M. Ganley, Ed., Oxford University Press.

    Google Scholar 

  16. J. H. DAVENPORT. Primality testing revisited. In ISSAC’92 (New York, 1992), P. S. Wang, Ed., ACM Press, pp. 123–129. Proceedings, July 27–29, Berkeley.

    Google Scholar 

  17. D. GORDON. Strong primes are easy to find. In Advances in Cryptology (1985), T. Beth, N. Cot, and I. Ingemarsson, Eds., vol. 209 of Lect. Notes in Computer Science, Springer-Verlag, pp. 216–223. Proceedings Eurocrypt ‘84, Paris ( France ), April 9–11, 1984.

    Google Scholar 

  18. D. M. GORDON. On the number of elliptic pseudoprimes. Math. Comp. 52, 185 (Jan. 1989), 231–245.

    Article  MATH  MathSciNet  Google Scholar 

  19. D. M. GORDON AND C. POMERANCE. The distribution of Lucas and elliptic pseudo-primes. Math. Comp. 57, 196 (Oct. 1991), 825–838.

    Article  MATH  MathSciNet  Google Scholar 

  20. D. GUILLAUME AND F. MORAIN. Building Carmichael numbers with a large number of prime factors and generalization to other numbers. Research Report 1741, INRIA, Aug. 1992.

    Google Scholar 

  21. S. GuRAK. Pseudoprimes for higher-order linear recurrence sequences. Math. Comp. 55, 192 (Oct. 1990), 783–813.

    Article  MATH  MathSciNet  Google Scholar 

  22. G. H. HARDY AND E. M. WRIGHT. An introduction to the theory of numbers, 5th ed. Clarendon Press, Oxford, 1985.

    Google Scholar 

  23. D. HUSEMÖLLER. Elliptic curves, vol. 111 of Graduate Texts in Mathematics. Springer, 1987.

    Google Scholar 

  24. G. JAESCHKE. The Carmichael numbers to 1012. Math. Comp. 55, 191 (July 1990), 383–389.

    MATH  MathSciNet  Google Scholar 

  25. W. KELLER. The Carmichael numbers to 1013. AMS Abstracts 9 (1988), 328–329. Abstract 88T-11–150.

    Google Scholar 

  26. G. C. KURTZ, D. SHANKS, AND H. C. WILLIAMS. Fast primality tests for numbers less than 50. 109. Math. Comp. 0, 174 (Apr. 1986), 691–701.

    MathSciNet  Google Scholar 

  27. G. LÖH. Carmichael numbers with a large number of prime factors. AMS Abstracts 9 (1988), 329. Abstract 88T-11–151

    Google Scholar 

  28. G. LÖH AND W. NIEBUHR. Carmichael numbers with a large number of prime factors, II. AMS Abstracts 10 (1989), 305. Abstract 89T-11–131

    Google Scholar 

  29. U. M. MAURER. Fast generation of secure RSA-products with almost maximal diversity. In Advances in Cryptology (1990), J.-J. Quisquater, Ed., vol. 434 of Lect. Notes in Computer Science, Springer-Verlag, pp. 636–647. Proc. Eurocrypt ‘89, Houthalen, April 10–13.

    Google Scholar 

  30. R. MESHULAM. An uncertainty inequality and zero subsums. Discrete Mathematics 8.4 (1990), 197–200.

    Google Scholar 

  31. I. MIYAMOTO AND M. R. MURTY. Elliptic psendoprimes. Math. Comp. 53, 187 (July 1989), 415–430.

    Article  MathSciNet  Google Scholar 

  32. L. MONIER. Evaluation and comparison of two efficient probabilistic primality testing algorithms. Theoretical Computer Science 12 (1980), 97–108.

    Article  MATH  MathSciNet  Google Scholar 

  33. R. PINCH. The Carmichael numbers to 1016. In preparation, 1992.

    Google Scholar 

  34. R. PINCH. The pseudoprimes up to 1012. In preparation, Sept. 1992.

    Google Scholar 

  35. D. A. PLAISTED. Fast verification, testing and generation of large primes. Theoretical Computer Science 9 (1979), 1–16.

    Article  MATH  MathSciNet  Google Scholar 

  36. C. POMERANCE. Carmichael numbers. To appear in Nieuw Arch. Wisk., 1992.

    Google Scholar 

  37. C. POMERANCE, J. L. SELFRIDGE, AND S. S. WAGSTAFF, JR. The pseudoprimes to 25.10. Math. Covrip. 35, 151 (1980), 1003–1026.

    MATH  MathSciNet  Google Scholar 

  38. M. O. R.ABIN. Probabilistic algorithms in finite fields. SIAM J. Comput. 9, 2 (1980), 273–280.

    Article  MathSciNet  Google Scholar 

  39. P. R.IBENBOIM. The book of prime number accords, 2nd ed: Springer, 1989.

    Google Scholar 

  40. R. SCHROEPPEL. Richard Pinch’s list of pseudoprimes. E-mail to the NMBRTHRY list, June 1992.

    Google Scholar 

  41. P. VAN EMDE BOAS. A combinatorial problem on finite abelian groups, II. Tech. Rep. ZW-007, Math. Centrum Amsterdam Afd. Zuivere Wisk., 1969. 60 pp.

    Google Scholar 

  42. P. VAN EMDE BOAS AND D. Kau swiiK. A combinatorial problem on finite abelian groups, III. Tech. Rep. ZW-008, Math. Centrum Amsterdam Afd. Zuivere Wisk., 1969.

    Google Scholar 

  43. M. ZIIANG. Searching for large Carmichael numbers. To appear in Sichuan Daxue Xuebao, Dec. 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Wien

About this chapter

Cite this chapter

Morain, F. (1993). Pseudoprimes: A Survey of Recent Results. In: Camion, P., Charpin, P., Harari, S. (eds) Eurocode ’92. International Centre for Mechanical Sciences, vol 339. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2786-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2786-5_18

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82519-8

  • Online ISBN: 978-3-7091-2786-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics