Skip to main content

Part of the book series: International Centre for Mechanical Sciences ((CISM,volume 100))

  • 95 Accesses

Abstract

As it is well known today, the advent of lasers revolutionalized the scientific optical recording technology. The most popular in this respect is holography — a technique made pratically possible as a consequence of the appreciable coherence length of the laser light [1] (*). It is of interest to note, however, that such exploitation of the advantages accrued by the use of lasers as light sources is by no means associated with the introduction of new principles. The fundamentals of holography, for instance, have been laid down by Gabor [2] long before laser was discovered. Thus the real nature of the revolution brought about by the use of lasers as light sources for optical observations is associated primarily with the improvements they introduced to experimental techniques whose basic features were known before.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stroke, G.W., An introduction to Coherent Optics and Holography, 270 pp., Academic Press, New-York, 1966.

    Google Scholar 

  2. Gabor, D., “Microscopy by Reconstructed Wave-Fronts”, Proc. Roy. Soc., A197, 454–487, 1949.

    Article  ADS  Google Scholar 

  3. Weinberg, F.J., “A Versatile Apparatus for the Study of Refractive Index Fields in Gases”, ARL 63–45, Wright-Patterson AFB, Ohio, February 1963.

    Google Scholar 

  4. Oppenheim, A.K., Urtiew, P.A. and Weinberg, F.J., “On the Use of Laser Light Sources in Schlieren-Interferometer Systems”, Proc. Roy. Soc., A291, 279–290, 1966.

    Article  ADS  Google Scholar 

  5. Heflinger, L.O., Wuerker, R.F. and Brooks, R.E., “Holograph is Interferometry”, J. Appl. Phys., 37, 2, 642–649, February 1966.

    Article  ADS  Google Scholar 

  6. Brooks, R. E., Heflinger, L.O. and Wuerker, R.F., “9A9—Pulsed Laser Holograms”, IEEE J. of Quantum Elect. QE-2, 8, 275–279, August 1966.

    Article  ADS  Google Scholar 

  7. Tanner, L.H., “Some Laser Interferometers for Use in Fluid Mechanics”, J. Sci. Instru., 42, 834–837, December 1965.

    Article  ADS  Google Scholar 

  8. Tanner, L.H., “Some Applications of Holography in Fluid Mechanics”, T. Sci. Instru., 43, 81–83, February 1966.

    Article  ADS  Google Scholar 

  9. Tanner, L.H., “The Application of Lasers to Time-Resolved Flow Visualization”, J. Sci. Instru., 43, 353–358, June 1966.

    Article  ADS  Google Scholar 

  10. Tanner, L.H., “The Design of Laser Interferometers for Use in Fluid Mechanics”, J. Sci. Instru., 43, 878–886, December 1966.

    Article  ADS  Google Scholar 

  11. Gates, J.W.C., “Holography with Scatter Plates”, J. Sci. Instru., Series 2, 1, 2, 1968.

    Google Scholar 

  12. Weinberg, F.J., Optics of Flames, 251 pp. ( Butterworths, Washington, D.C. ) 1963.

    Google Scholar 

  13. Shafer, H.J., “Physical Optics Analysis of Image Quality in Schlieren Photography”, J. Soc. Motion Picture Engrs., 53, p. 524, 1949.

    Article  Google Scholar 

  14. Lord Rayleigh, “On Methods for Detecting Small Optical Retardations and on the Theory of Foucaults Test”, Sci. Pap., Cambridge University Press, 6, p. 455, 1920.

    Google Scholar 

  15. Speak, G.S. and Walters, D.J., “Optical Considerations and Limitations of the Schlieren Method”, Aeronautical Research Council, Rpt. & Memo; 2859, 1954.

    Google Scholar 

  16. Linfoot, E.H., “A Contribution to the Theory of the Foucault Test”, Proc. Roy. Soc., A186, p. 72, 1946.

    Google Scholar 

  17. Schardin, H., “Die Schlierenverfahren und Ihre Anwendungen”, Ergebn. Exakt. Naturw., 20, p. 303, 1942.

    MATH  Google Scholar 

  18. Ellis, O.C. de C. and Morgan, E. “The Vibratory Movement in Flames”, Trans. Faraday Soc. 28, p. 826, 1932.

    Article  Google Scholar 

  19. Ellis, O.C. de C. and Morgan, E. “The Temperature Gradient in Flames”, Trans. Faraday Soc., 30, p. 287, 1934.

    Article  Google Scholar 

  20. Burgoyne, J.H. and Weinberg, F.J., “Studies of the Mechanism of Flame Propagation in Premixed Gases”, Z. Elektrochem. (Bunsengesellschaft Symposium) 61, p. 565, 1967.

    Google Scholar 

  21. Reck, J., Sumi, K. and Weinberg, F.J., “An Optical Method of Flame Temperature Measurement, II–Sensitivi ty and Application”, Fuel, 35, P. 364, 1956.

    Google Scholar 

  22. Ronchi, V., La Prova dei Sistemi Ottici, Zanichelli, Bologna, 1925.

    MATH  Google Scholar 

  23. Levy, A. and Weinberg, F.J., “Optical Flame Structure Studies: Examination of Reaction Rate Laws in Lean Ethylene Air Flames”, Combustion and Flame, 3, p. 229, 1959.

    Article  Google Scholar 

  24. Levy, A. and Weinberg, F.J., “Optical Flame Structure Studies: Some Conclusions Concerning the Propagation of Flat Flames”, VII Symposium (International) on Combustion, p. 296, Butterworths, London, 1959.

    Article  Google Scholar 

  25. Wolter, H., „Schlieren-Phasenkontrast-und Lichtschnittverfahren”, Handb. Phys., 24, p. 555, 1956.

    ADS  Google Scholar 

  26. Pandya, T.P. and Weinberg, F.J., “The Study of the Structure of Laminar Diffusion Flames by Optical Methods”, IX Symposium (International) on Combustion, p. 587, Academic Press, New York, 1963.

    Chapter  Google Scholar 

  27. Hannes, H., “The Properties of Shadowgraphs”, Optik, Stuttgart, 13, P. 34, 1956.

    Google Scholar 

  28. Kraushaar, R., “A Diffraction Grating Interferometer”, J. Opt. Soc. Amer., 40, P. 480, 1950.

    Article  Google Scholar 

  29. Sterrett, J.R. and Erwin, J.R., “Investigation of DifFraction Grating Interferometer for Use in Aerodynamic Research”, NACA Tech. Note 2827, 1952

    Google Scholar 

  30. Pandya, T.P. and Weinberg, F.J., “The Structure of Flat Counter-Flow Diffusion Flames”, Proc. Roy. Soc., A279, p. 544, 1964.

    Article  ADS  Google Scholar 

  31. Schwar, M.J.R., and Weinberg, F.J., “Coherent Light Sources and Refractive Index Fields”, Phys. Bull., 21, 490–492, 1970.

    Article  Google Scholar 

  32. Jones, A.R., Schwar, M.J.R. and Weinberg, F.J., “Generalizing Variable Shear Interferometry for the Study of Stationary and Moving Refractive Index Fields with the Use of Laser Light”, Proc. Roy. Soc., A322, 119–135, 1971.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Springer-Verlag Wien

About this chapter

Cite this chapter

Oppenheim, A.K., Kamel, M.M. (1972). Optics. In: Laser Cinematography of Explosions. International Centre for Mechanical Sciences, vol 100. Springer, Vienna. https://doi.org/10.1007/978-3-7091-2860-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-2860-2_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81179-5

  • Online ISBN: 978-3-7091-2860-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics