Skip to main content

Receptor Blockade and Synaptic Function

  • Conference paper
Basic Aspects of Receptor Biochemistry

Part of the book series: Journal of Neural Transmission ((NEURAL SUPPL,volume 18))

  • 41 Accesses

Summary

When a neurotransmitter substance is released into a synaptic cleft it acts upon subsynaptic receptors to induce a response of the target cell and also interacts with systems which act to remove the substance. At no time is there an equilibrium, and it is inappropriate to apply equilibrium kinetics to predict the consequences of modifying the system, e.g. by blocking receptors. A mathematical model predicts that the subsynaptic response to each package or “quantum” of transmitter may be insensitive to competitive receptor blockade, or to quite large changes in receptor density, provided the density of receptors is normally enough for efficient capture of transmitter. This prediction is borne out by experimental data from the voltage-clamped mouse neuromuscular junction; it requires blockade or removal of about 80% of receptors (90% after poisoning of acetylcholinesterase) to reduce the miniature end-plate current, i.e. the action of a quantum if nerve-released acetylcholine (ACh), by 50%. On the other hand, drugs that interfere with receptor function without preventing ACh binding to receptors can be just as (or more) effective in blocking nerve-applied as in blocking exogenously applied transmitter substances. At the neuromuscular junction this is seen with receptor desensitization, and “non-specific” agents such as local and general anaesthetics. We conclude that care must be taken in extrapolating from data re receptor number and/or occupancy by blocking drugs to consequences in terms of synaptic function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, P.R.: A model for the procaine end-plate current. J. Physiol. (Lond.) 246, 61–63 (1975).

    Google Scholar 

  • Colquhoun, D., Dreyer, F., Sheridan, E.: The actions of tubocurarine at the frog neuromuscular junction. J. Physiol. (Lond.) 266, 361–395 (1979).

    Article  Google Scholar 

  • Dreyer, F., Peper, K., Sterz. R.: Determination of dose response curves by quantitations iontophoresis at the frog neuromuscular junction. J. Physiol. (Lond.) 281, 421–444 (1978).

    Article  Google Scholar 

  • Elmgvist, D., Hofmann, W. W, Kugelberg, j, Quastel D. MI: An electrophysiological investigation of neuromuscular transmission in myasthenia gravis. J. Physiol. (Lond.) 174, 417–434 (1964).

    Article  Google Scholar 

  • Fambrough, D. M., Hartzell, H. C.: Acetylcholine receptors: number and distribution at neuromuscular junctions in rat diaphragm. Science (N.Y.) 176, 189–191 (1972).

    Article  CAS  Google Scholar 

  • Feltz, A., Trautmann, A.: Desensitization at the frog neuromuscular junction: a biphasic process. J. Physiol. (Lond.) 322, 257–272 (1982).

    Article  CAS  Google Scholar 

  • Fertuck, H. C., Salpeter, M. M.: Localization of acetylcholine receptor by 1zsI labelled a-bungarotoxin binding at mouse motor endplate. Proc. Natl. Acad. Sci., U.S.A. 71, 1376–1378 (1974).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fertuck, H. C., Salpeter, M. M.: Quantitation of junctional and extra-junctional acetylcholine receptors by electron microscope autoradiography after 121-a-bungarotoxin binding at mouse neuromuscular junctions. J. Cell. Biol. 69, 144–158 (1976).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gage, P. W, McBurney, R. N, Schneider, G. T.: Effects of some aliphatic alcohols on the conductance change caused by a quantum of acetylcholine at the toad endplate. J. Physiol. (Lond.) 244, 409–429 (1975).

    Article  CAS  Google Scholar 

  • Hartzell H. C., Kugler, S. W, Yoshikami, D.: Post-synaptic potentiation: interaction between quanta of acetylcholine at the skeletal neuromuscular synapse. J. Physiol. (Lond.) 152, 309–324 (1975).

    Google Scholar 

  • Katz B., Miledi, R.: The binding of acetylcholine in receptors and its removal from the synaptic cleft. J. Physiol. (Lond.) 231, 549–574 (1973).

    Article  PubMed Central  CAS  Google Scholar 

  • Katz, B., Thesleff S.: A study of the desensitization produced by acetylcholine at the motor end-plate. J. Physiol. (Lond.) 138, 60–80 (1957).

    Article  Google Scholar 

  • Pennefather, P., Quastel, D. M.J.: The effects of myasthenic IgG on miniature end-plate currents in mouse diaphragm. Life Sci. 27, 2047–2054 (1980 a).

    Google Scholar 

  • Pennefather, P., Quastel, D. M.J.: Actions of Anesthetics on the function of nicotinic acetylcholine receptors. In: Progress in Anesthesiology, Vol. 2: Molecular Mechanisms of Anesthetics (Fink, B. R., ed.), pp. 157–168. New York: Raven Press. 1980 b.

    Google Scholar 

  • Pennefather, P., Quastel, D. M.J.: Relation between subsynaptic receptor blockade and response to quantal transmitter at the mouse neuromuscular junction. J. Gen. Physiol. 78, 313–344 (1981).

    Article  CAS  PubMed  Google Scholar 

  • Pennefather, P., Quastel, D. M.J.: Modifications of dose-response curves by effector blockade and uncompetitive antagonism. Molec. Pharmacol. 22, 369–380 (1982).

    CAS  Google Scholar 

  • Quastel, D. M.J., Linder, T. M.: Pre- and post-synaptic actions of central depressants at the mammalian neuromuscular junction. In: Progress in Anesthesiology, Vol. 1: Molecular Mechanisms of Anaesthesia (Fink, B. R., ed.), pp. 157–168. New York: Raven Press. 1975.

    Google Scholar 

  • Richter, J., Landau, E. M., Cohen, S.: The action of volatile anesthetics and convulsants on synaptic transmission: A unified concept. Molec. Pharmacol. 13, 548–559 (1977 a).

    Google Scholar 

  • Richter, J., Landau, E. M., Cohen, S.: Effect of fluorinated ethers on channel conductance in a cholinergic synapse. Isr. J. Med. Sci. 13, 533–534 (1977 b).

    Google Scholar 

  • Wathey, J. C., Nass, W. M., Lester, H. A.: Numerical reconstruction of the quantal event at nicotinic synapses. Biophys. J. 27, 145–164 (1979).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Authors’ address: Prof. Dr. D. Quastel, Department of Pharmacology, The University of British Columbia, 2176 Health Sciences Mall, Vancouver, B.C., Canada V6T 1W5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Wien

About this paper

Cite this paper

Quastel, D.M.J., Pennefather, P. (1983). Receptor Blockade and Synaptic Function. In: Goldstein, M., Jellinger, K., Riederer, P. (eds) Basic Aspects of Receptor Biochemistry. Journal of Neural Transmission, vol 18. Springer, Vienna. https://doi.org/10.1007/978-3-7091-4408-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-4408-4_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-4410-7

  • Online ISBN: 978-3-7091-4408-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics