Skip to main content

Studies on the Anode/Electrolyte Interface in Lithium Ion Batteries

  • Chapter
Electroactive Materials

Summary

Rechargeable lithium ion cells operate at voltages of 3.5–4.5 V, which is far beyond the thermodynamic stability window of the battery electrolyte. Strong electrolyte reduction and anode corrosion has to be anticipated, leading to irreversible loss of electroactive material and electrolyte and thus strongly deteriorating cell performance. To minimize these reactions, anode and electrolyte components have to be combined that induce the electrolyte reduction products to form an effectively protecting film at the anode/electrolyte interface, which hinders further electrolyte decomposition reactions, but acts as membrane for the lithium cations, i.e. behaving as a solid electrolyte interphase (SEI). This paper focuses on important aspects of the SEI. By using key examples, the effects of film forming electrolyte additives and the change of the active anode material from carbons to lithium storage alloys are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nagaura T, Tozawa K (1990) Prog Batt Solar Cells 9: 209

    CAS  Google Scholar 

  2. Nomura Research Institute (1996) Nomura Institute Research Report, Advanced Rechargeable Battery Industry ‘96, Tokyo, Japan

    Google Scholar 

  3. See for example papers in: ITE Batt Lett (1999) Vol 1(2)

    Google Scholar 

  4. Winter M, Besenhard JO, Spahr ME, Noväk P (1998) Adv Mater 10: 725

    Article  CAS  Google Scholar 

  5. Winter M, Besenhard JO (1999) Lithiated Carbons. In: Besenhard JO (ed) Handbook of Battery Materials, part III. Wiley-VCH, Weinheim, p 383

    Google Scholar 

  6. Winter M, Besenhard JO (1999) Electrochim Acta 45: 31

    Article  CAS  Google Scholar 

  7. Peled E, Golodnitzky D, Penciner J (1999) The Anode/Electrolyte Interface. In: Besenhard JO (ed) Handbook of Battery Materials, part III. Wiley-VCH, Weinheim, p 419

    Google Scholar 

  8. Wrodnigg GH, Besenhard JO, Winter M (1999) J Electrochem Soc 146: 470

    Article  CAS  Google Scholar 

  9. Besenhard JO, Wagner MW, Winter M, Jannakoudakis AD, Jannakoudakis PD, Theodoridou E (1993) J Power Sources 43–44: 413

    Article  Google Scholar 

  10. Imhof R, Novak P (1996) J Electrochem Soc 145: 1081

    Article  Google Scholar 

  11. Wrodnigg GH, Wrodnigg TM, Besenhard JO, Winter M (1999) Electrochem Comm 1: 148

    Article  CAS  Google Scholar 

  12. Wrodnigg GH, Reisinger C, Besenhard JO, Winter M (1999) ITE Batt Lett 1: 110

    CAS  Google Scholar 

  13. Lie LH, Hodal T, Möller KC, Wrodnigg GH, Appel WK, Besenhard JO, Winter M (1999) ITE Batt Lett 1: 106

    Google Scholar 

  14. Möller KC, Hodal T, Appel WK, Besenhard JO, Winter M (to be published)

    Google Scholar 

  15. Besenhard JO, v. Werner K, Winter M (1997) Ger Pat PCT/DE97/107506.4–1215 Eur Pat 807986, US Pat 5916708

    Google Scholar 

  16. Appel WK, Besenhard JO, Pasenok S, Winter M, Wrodnigg GH (1998) Ger Offen DE 19 724 709 Al

    Google Scholar 

  17. Appel WK, Besenhard JO, Lie LH, Pasenok S, Winter M (1998) Eur Patent Appl

    Google Scholar 

  18. Appel WK, Besenhard JO, Lie LH, Pasenok S, Winter M (1998) Eur Patent Appl

    Google Scholar 

  19. Yang J, Wachtler M, Winter M, Besenhard JO (1999) Electrochem Solid-State Lett 2: 161

    Article  CAS  Google Scholar 

  20. Besenhard JO, Yang J, Winter M (1997) J Power Sources 68: 87

    Article  CAS  Google Scholar 

  21. Yang J, Winter M, Besenhard JO (1996) Solid State Ionics 90: 281

    Article  CAS  Google Scholar 

  22. Boukamp BA, Lesh GC, Huggins RA (1981) J Electrochem Soc 128: 725

    Article  CAS  Google Scholar 

  23. Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Science 276: 1395

    Article  CAS  Google Scholar 

  24. Courtney IA, Dahn JR (1997) J Electrochem Soc 144: 2045

    Article  CAS  Google Scholar 

  25. Mao O, Turner RL, Courtney IA, Fredericksen BD, Buckett MI, Krause LJ, Dahn JR (1999) Electrochem Solid-State Lett 2: 3

    Article  CAS  Google Scholar 

  26. Courtney IA, McKinnon WR, Dahn JR (1999) J Electrochem Soc 146: 59

    Article  CAS  Google Scholar 

  27. Yang J, Besenhard JO, Winter M (1997) In: Holmes CF, Landgrebe AR (eds) The Electrochemical Society Proceedings Series 97–18, Batteries for portable applications and electric vehicles, p 350

    Google Scholar 

  28. Evers B, Schneider I, Wrodnigg GH, Winter M, Besenhard JO (March 31, 1998) In: Schwabe I (ed) Begleittexte zum Entwicklerforum: Batterien, Ladekonzepte & Stromversorgungsdesign. München, p 28

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this chapter

Cite this chapter

Winter, M. et al. (2001). Studies on the Anode/Electrolyte Interface in Lithium Ion Batteries. In: Besenhard, J.O., Sitte, W., Stelzer, F., Gamsjäger, H. (eds) Electroactive Materials. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6211-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6211-8_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7273-5

  • Online ISBN: 978-3-7091-6211-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics