Skip to main content

The “gene dosage effect” hypothesis versus the “amplified developmental instability” hypothesis in Down syndrome

  • Conference paper
The Molecular Biology of Down Syndrome

Summary

Two hypotheses exist to explain the Down syndrome (DS) phenotype. The “gene dosage effect” hypothesis states that the phenotype is a direct result of the cumulative effect of the imbalance of the individual genes located on the triplicated chromosome or chromosome region. In a nut shell, the phenotype results directly from the overexpression of specific chromosome 21 genes. The “amplified developmental instability” hypothesis contends that most manifestations of DS may be interpreted as the results of a non-specific disturbance of chromosome balance, resulting in a disruption of homeostasis. This hypothesis was proposed in an attempt to explain the similarities between the phenotypes of different aneuploid states and the observation that all of the phenotypic traits in DS are also seen in the general population but at lower frequency, with less severity and usually only present as a single trait. Herein, we review recent data and present evidence to support the theory that the phenotypic traits of aneuploid syndromes, and DS in particular, result from the increased dosage of genes encoded on the triplicated chromosome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlbom BE, Goetz P, Korenberg JR, Pettersson U, Seemanova E, Wadelius C, Zech L, Anneren G (1996) Molecular analysis of chromosome 21 in a patient with a pheno-type of Down syndrome and apparently normal karyotype. Am J Med Genet 63: 566–572

    Article  PubMed  CAS  Google Scholar 

  • Barden HS (1980) Fluctuating dental asymmetry: a measure of developmental instability in Down syndrome. Am J Phys Anthropol 52: 169–173

    Article  PubMed  CAS  Google Scholar 

  • Blum-Hoffmann E, Rehder H, Langenbeck U (1988) Skeletal anomalies in trisomy 21 as an example of amplified developmental instability in chromosome disorders: a histological study of the feet of 21 mid-trimester fetuses with trisomy 21. Am J Med Genet 29: 155–160

    Article  PubMed  CAS  Google Scholar 

  • Breg WR (1977) Down syndrome: a review of recent progress in research. Pathobiol Annu 7: 257–303

    PubMed  CAS  Google Scholar 

  • Caviedes P, Ault B, Rapoport SI (1990) Electrical membrane properties of cultured dorsal root ganglion neurons from trisomy 19 mouse fetuses: a comparison with the trisomy 16 mouse fetus, a model for Down syndrome. Brain Res 511: 169–172

    Article  PubMed  CAS  Google Scholar 

  • Coussons-Read ME, Crnic LS (1996) Behavioral assessment of the Ts65Dn mouse, a model for Down syndrome: altered behavior in the elevated plus maze and open field. Behav Genet 26: 7–13

    Article  PubMed  CAS  Google Scholar 

  • Davisson MT, Schmidt C, Reeves RH, Irving NG, Akeson EC, Harris BS, Bronson RT (1993) Segmental trisomy as a mouse model for DS. In: Epstein CJ (ed) The pheno-typic mapping of Down syndrome and other aneuploid conditions. John Wiley, New York, pp 117–133

    Google Scholar 

  • Dunlap SS, Aziz MA, Rosenbaum KN (1986) Comparative anatomical analysis of human trisomies 13, 18 and 21: the forelimb. Teratology 33: 159–186

    Article  PubMed  CAS  Google Scholar 

  • Epstein CJ (1986) The consequences of chromosome imbalance: principles, mechanisms and models. Cambridge University Press, New York

    Book  Google Scholar 

  • Epstein CJ (1988) Specificity versus nonspecificity in the pathogenesis of aneuploid phenotypes. Am J Med Genet 29: 161–165

    Article  PubMed  CAS  Google Scholar 

  • Escorihuela RM, Fernández-Teruel A, Vallina IF, Baamonde C, Lumbreras MA, Dierssen M, Tobeña A, Flórez J (1995) Behavioral assessment of Ts65Dn mice: a putative DS model. Neurosci Lett 199: 143–146

    Article  PubMed  CAS  Google Scholar 

  • Ferencz C, Neill CA, Boughman JA, Rubin JD, Brenner JI, Perry LW (1989) Congenital cardiovascular malformations associated with chromosome abnormalities: an epidemiologic study. J Pediatr 114: 79–86

    Article  PubMed  CAS  Google Scholar 

  • Gearhart JD, Davisson MT, Oster-Granite ML (1986) Autosomal aneuploidy in mice: generation and developmental consequences. Brain Res Bull 16: 789–801

    Article  PubMed  CAS  Google Scholar 

  • Greber-Platzer S, Schatzmann-Turhani D, Wollenek G, Lubec G (1999) Evidence against the current hypothesis of “gene dosage effects” of trisomy 21: Ets-2, encoded on chromosome 21 is not overexpressed in hearts of patients with Down Syndrome. Biochem Biophys Res Commun 254: 395–399

    Article  PubMed  CAS  Google Scholar 

  • Hassold TJ, Jacobs PA (1984) Trisomy in man. Annu Rev Genet 18: 69–97

    Article  PubMed  CAS  Google Scholar 

  • Holtzman DM, Santucci D, Kilbridge J, Chua-Couzens J, Fontana DJ, Daniels SE, Johnson RM, Chen K, Sun Y, Carlson E, Alleva E, Epstein CJ, Mobley WC (1996) Developmental abnormalities and age-related neurodegeneration in a mouse model of DS. Proc Natl Acad Sci USA 93: 13333–13338

    Article  PubMed  CAS  Google Scholar 

  • Jones KL (ed) (1988) Smith’s recognizable patterns of human malformation, 4th ed. WB Saunders, Philadelphia

    Google Scholar 

  • Karayiorgou M, Morris MA, Morrow B, Shprintzen RJ, Goldberg R, Borrow J, Gos A, Nestadt G, Wolyniec PS, Lasseter VK, Eisen H, Childs B, Kazanian HH, Kucherlapati R, Atonarakis SE, Pulver AE, Housman (1995) Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc Natl Acad Sci USA 92: 7612–7616

    Article  PubMed  CAS  Google Scholar 

  • Kola I, Hertzog P (1997) Animal models in the study of the biological function of genes on HSA21 and their role in the pathophysiology of DS. Hum Mol Genet 6:1713–1727

    Article  PubMed  CAS  Google Scholar 

  • Kola I, Herzog PJ (1998) Down Syndrome in mouse models. Curr Opin Genet Dev 8: 316–321

    Article  PubMed  CAS  Google Scholar 

  • Kola I, Pritchard M (1999) Animal models of Down syndrome. Mol Med Today 5: 276–277

    Article  PubMed  CAS  Google Scholar 

  • Korenberg JR, Bradley C, Disteche CM (1992) Down syndrome: molecular mapping of the congenital heart disease and duodenal stenosis. Am J Hum Genet 50: 294–302

    PubMed  CAS  Google Scholar 

  • Kurnit DM, Aldridge JF, Matsuoka R, Matthysse S (1985) Increased adhesiveness of trisomy 21 cells and atrioventricular canal malformations in Down syndrome: a stochastic model. Am J Med Genet 30: 385–399

    Article  Google Scholar 

  • Langenbeck U, Blum E, Wilkert-Walter C, Hansmann (1984) Developmental pathogenesis of chromosome disorders: report on two newly recognized signs of Down syndrome. Am J Med Genet 18: 223–230

    Article  PubMed  CAS  Google Scholar 

  • Lee LG, Jackson JF (1972) Diagnosis of Down’s syndrome: clinical versus laboratory. Clin Pediatr 11: 353–356

    Article  CAS  Google Scholar 

  • Li J, Xu M, Zhou H, Ma J, Potter H (1997) Alzheimer presenilins in the nuclear membrane, interphase kinetochores, and centrosomes suggest a role in chromosome segregation. Cell 90: 917–927

    Article  PubMed  CAS  Google Scholar 

  • Mueller RF, Young ID (1998) Chromosome disorders. In: Emery’s Elements of Medical Genetics. Churchill Livinstone, pp 245–264

    Google Scholar 

  • Opitz J (1982) The developmental field concept in clinical genetics. J Pediatr 101: 805–809

    Article  PubMed  CAS  Google Scholar 

  • Oster-Granite ML, Lacey-Casem ML (1995) Neurotransmitter alterations in the trisomy 16 mouse: a genetic model system for studies of Down syndrome. MRDD Res Rev 1: 227–236

    Google Scholar 

  • Paoloni-Giacobino A, Chen H, Antonarakis SE (1997) Cloning of a novel human neural cell adhesion molecule gene (NCAM2) that maps to chromosome region 21q21 and is potentially involved in Down syndrome. Genomics 43: 43–51

    Article  PubMed  CAS  Google Scholar 

  • Prasher VP, Farrer MJ, Kessling AM, Fisher EM, West RJ, Barber PC, Butler AC (1998) Molecular mapping of Alzheimer-type dementia in Down’s syndrome. Ann Neurol 43: 380–383

    Article  PubMed  CAS  Google Scholar 

  • Reeves RH, Irving NG, Moran TH, Wohn A, Kitt C, Sisodia SS, Schmid C, Bronson RT, Davisson M (1995) A mouse model for DS exhibits learning and behaviour deficits. Nat Genet 11: 177–184

    Article  PubMed  CAS  Google Scholar 

  • Sago H, Carlson EJ, Smith D, Kilbridge J, Rubin EM, Mobley WC, Epstein CJ, Huang TT (1998) TslCje, a partial trisomy 16 mouse model for DS, exhibits learning and behavioral abnormalities. Proc Natl Acad Sci USA 95: 6256–6261

    Article  PubMed  CAS  Google Scholar 

  • Sakata K, Tamura G, Nishizuka S, Maesawa C, Suzuki Y, Iwaya T, Terashima M, Saito K, Satodate R (1997) Commonly deleted regions on the long arm of chromosome 21 in differentiated adenocarcinoma of the stomach. Genes Chromosomes Cancer 18: 318–321

    Article  PubMed  CAS  Google Scholar 

  • Satge D, Sasco AJ, Geneix A, Malet P (1998a) Another reason to look for tumor suppressor genes on chromosome 21. Genes Chromosomes Cancer 21: 1

    Article  PubMed  CAS  Google Scholar 

  • Satge D, Sasco AJ, Carlsen NL, Stiller CA, Rubie H, Hero B, de Bernardi B, de Kraker J, Coze C, Kogner P, Langmark F, Hakvoort-Cammel FG, Beck D, von der Weid N, Parkes S, Hartmann O, Lippens RJ, Kamps WA, Sommelet D (1998b) A lack of neuroblastoma in Down syndrome: a study from 11 European countries. Cancer Res 58: 448–452

    PubMed  CAS  Google Scholar 

  • Shapiro BL (1975) Amplified developmental instability in Down’s syndrome. Ann Hum Genet 38: 429–437

    Article  PubMed  CAS  Google Scholar 

  • Shapiro BL (1983) Down syndrome-A disruption of homeostasis. Am J Med Genet 14: 241–296

    Article  PubMed  CAS  Google Scholar 

  • Shapiro BL (1989) The pathogenesis of aneuploid phenotypes: the fallacy of explanatory reductionism. Am J Med Genet 33: 146–150

    Article  PubMed  CAS  Google Scholar 

  • Shapiro BL (1994) The environmental basis of the Down syndrome phenotype. Dev Med Child Neurol 36: 84–90

    Article  PubMed  CAS  Google Scholar 

  • Shen JJ, Williams BJ, Zipursky A, Doyle J, Sherman SL, Jacobs PA, Shugar AL, Soukup SW, Hassold TJ (1995) Cytogenetic and molecular studies of Down syndrome individuals with leukemia. Am J Hum Genet 56: 915–925

    PubMed  CAS  Google Scholar 

  • Smith DJ, Stevens ME, Sudanagunta SP, Bronson RT, Makhinson M, Watabe AM, O’Dell TJ, Fung J, Weier HU, Cheng JF, Rubin EM (1997) Functional screening of 2 Mb of human chromosome 21q22.2 in transgenic mice implicates minibrain in learning defects associated with Down syndrome. Nat Genet 16: 28–36

    Article  PubMed  CAS  Google Scholar 

  • Trauner DA, Bellugi U, Chase C (1989) Neurologic features of Williams and Down syndromes. Pediatr Neurol 5: 166–168

    Article  PubMed  CAS  Google Scholar 

  • Wilson L, Curtis A, Korenberg JR, Schipper RD, Allan L, Chenevix-Trench G, Stephenson A, Goodship J, Burn J (1993) A large, dominant pedigree of atrioventricular septal defect (AVSD): exclusion from the Down syndrome critical region on chromosome 21. Am J Hum Genet 53: 1262–1268

    PubMed  CAS  Google Scholar 

  • Witkop CJ Jr, Keenan KM, Cervenka J, Jaspers MT (1988) Taurodontism: an anomaly of teeth reflecting disruptive developmental homeostasis. Am J Med Genet [Suppl]4: 85–97

    Article  Google Scholar 

  • Yamakawa K, Huot YK, Haendelt MA, Hubert R, Chen XN, Lyons GE, Korenberg JR (1998) DSCAM: a novel member of the immunoglobulin superfamily maps in a Down syndrome region and is involved in the development of the nervous system. Hum Mol Genet 7: 227–237

    Article  PubMed  CAS  Google Scholar 

  • Zihni L (1994) Down’s syndrome, interferon sensitivity and the development of leukaemia. Leuk Res 18: 1–6

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Wien

About this paper

Cite this paper

Pritchard, M.A., Kola, I. (1999). The “gene dosage effect” hypothesis versus the “amplified developmental instability” hypothesis in Down syndrome. In: Lubec, G. (eds) The Molecular Biology of Down Syndrome. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6380-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6380-1_20

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83377-3

  • Online ISBN: 978-3-7091-6380-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics