Skip to main content

Abstract

The techniques of electrical impedance tomography (EIT) have been widely studied over the past several years, for applications in both medical imaging and nondestructive evaluation. The goal is to find the electrical conductivity of a spatially inhomogeneous medium inside a given domain, using electrostatic measurements collected at the boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Allers and F. Santosa, Stability and resolution analysis of a linearized problem in electrical impedance tomography, Inverse Problems, 7 (1991), pp. 515–533.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Barber, B. Brown, and J. Jossinet, Electrical impedance tomography, Clinical Physics and Physiological Measurements, 9 (1988). Supplement A.

    Google Scholar 

  3. W.R. Breckon and M.K. Pidcock, Some mathematical aspects of electrical impedance tomography, in Mathematics and Computer Science in Medical Imaging, M.A. Viergever and A. Todd-Pokropek, eds., NATO ASI Series, Springer Verlag (1987), pp. 351–362.

    Google Scholar 

  4. A.P. Calderón, On an inverse boundary value problem, in Seminar on Numerical Analysis and its Applications to Continuum Physics (Soc. Brasileira de Matematica, Rio de Janerio (1980).

    Google Scholar 

  5. F. Catte, P.L. Lions, J. Morel, and T. Coll, Image selective smoothing and edge detection by nonlinear diffusion, SIAM J. Numer. Anal., 29 (1992), pp. 182–193.

    Article  MathSciNet  MATH  Google Scholar 

  6. T. F. Chan, H. M. Zhou, and R. H. Chan, A Continuation Method for Total Variation Denoising Problems, UCLA CAM Report 95-18.

    Google Scholar 

  7. A. Chambolle and P. L. Lions, Image recovery via total variation minimization and related problems, Research Report No. 9509, CEREMADE, Universite de Paris-Dauphine, 1995.

    Google Scholar 

  8. P. Charbonnier, L. Blanc-Feraud, G. Aubert, and M. Barlaud, Deterministic edge-preserving regularization in computed imaging, Research Report no. 94-01, Univ. of Nice-Sophia Antipolis, 1994.

    Google Scholar 

  9. T. Coleman and Y. Li, A globally and quadratically convergent affine scaling method for linear l1problems, Mathematical Programming, 56 (1992), pp. 189–222.

    Article  MathSciNet  MATH  Google Scholar 

  10. T. Coleman and J. Liu, An interior Newton method for quadratic programming, Cornell University Department of Computer Science Preprint TR 93-1388, 1993.

    Google Scholar 

  11. D. Dobson, Estimates on resolution and stabilization for the linearized inverse conductivity problem, Inverse Problems, 8 (1992), pp. 71–81.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Dobson, Exploiting ill-posedness in the design of diffractive optical structures, in “Mathematics in Smart Structures”, H. T. Banks, ed., SPIE Proc. 1919 (1993), pp. 248–257.

    Google Scholar 

  13. D. Dobson and F. Santosa, An image-enhancement technique for electrical impedance tomography, Inverse Problems 10 (1994) pp. 317–334.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Dobson and F. Santosa, Recovery of blocky images from noisy and blurred data, SIAM J. Appl. Math., to appear.

    Google Scholar 

  15. D. Dobson and F. Santosa, Resolution and stability analysis of an inverse problem in electrical impedance tomography—dependence on the input current patterns. SIAM J. Appl. Math, 54 (1994) pp. 1542–1560.

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Donoho, Superresolution via sparsity constraints, SIAM J. Math. Anal., 23 (1992), pp. 1309–1331.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Geman and C. Yang, Nonlinear image recovery with half-quadratic regularization, IEEE Trans. Image Proc., vol. 4 (1995), pp. 932–945.

    Article  Google Scholar 

  18. E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhauser, Boston, 1984. Monographs in Mathematics, Vol. 80.

    Google Scholar 

  19. G. Golub and C. V. Loan, Matrix Computations, Johns Hopkins, 1983.

    Google Scholar 

  20. K. Ito and K. Kunisch, An active set strategy based on the augmented Lagrangian formulation for image restoration, preprint (1995).

    Google Scholar 

  21. Y. Li and F. Santosa, An affine scaling algorithm for minimizing total variation in image enhancement, Cornell Theory Center Technical Report 12/94, submitted to IEEE Trans. Image Proc.

    Google Scholar 

  22. S. Osher and L.I. Rudin, Feature-oriented image enhancement using shock filters, SIAM J. Numer. Anal., 27 (1990), pp. 919–940.

    Article  MATH  Google Scholar 

  23. L.I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D., 60 (1992), pp. 259–268.

    Article  MATH  Google Scholar 

  24. L.I. Rudin, S. Osher, and C. Fu, Total variation based restoration of noisy blurred images, SIAM J. Num. Anal., to appear.

    Google Scholar 

  25. F. Santosa and W. Symes, Linear inversion of band-limited reflection seismograms, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 1307–1330.

    Article  MathSciNet  MATH  Google Scholar 

  26. F. Santosa and W. Symes, Reconstruction of blocky impedance profiles from normal-incidence reflection seismograms which are band-limited and miscalibrated, Wave Motion, 10 (1988), pp. 209–230.

    Article  MathSciNet  MATH  Google Scholar 

  27. C.R. Vogel and M. E. Oman, Iterative methods for total variation denoising, SIAM J. Sci. Comput., to appear.

    Google Scholar 

  28. C.R. Vogel and M. E. Oman, Fast numerical methods for total variation minimization in image reconstruction, in SPIE Proc. Vol. 2563, Advanced Signal Processing Algorithms, July 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Wien

About this chapter

Cite this chapter

Dobson, D.C. (1997). Recovery of Blocky Images in Electrical Impedance Tomography. In: Engl, H.W., Louis, A.K., Rundell, W. (eds) Inverse Problems in Medical Imaging and Nondestructive Testing. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6521-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6521-8_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83015-4

  • Online ISBN: 978-3-7091-6521-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics