Skip to main content

Quantum effects in the simulation of conventional devices

  • Conference paper
Simulation of Semiconductor Processes and Devices 1998

Abstract

It is widely known that a fundamental role in the evolution of modern solid-state devices is played by scaling theories. The constant increase of the circuit complexity, the reduction of their dimensions and power consumption, in fact, is made possible mainly due to device shrinking. Of course, this progress wouldn’t have happened without the parallel evolution of semiconductor technologies, which, in turn, probably wouldn’t have progressed this much if the performance limits of MOS transistors had been reached sooner. Therefore, it is important to understand and try to predict these limits, possibly to avoid them circumventing their origin, ultimately to delay as much as possible the need of a different technology. To this purpose, from the theoretical side it is important to identify the correct physical frame in which investigations have to be performed, with the aim of bridging the gap between experiments and models, and, in essence, to be confident on the prediction ability of the simulation tools. In this paper we focus our attention on the modeling of quantum effects in MOS transistors, presenting some recent applications concerning quantum effects in MOSFETs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Dennard et al., IEEE J. Solid-State Circuits 9, 256 (1974)

    Article  Google Scholar 

  2. G. Baccarani, M. R. Wordeman, R. H. Dennard, IEEE Trans. Electron Devices 31, 452 (1984)

    Article  Google Scholar 

  3. M. Ono et al., IEEE Trans. Electron Devices 42, 1822 (1995)

    Article  Google Scholar 

  4. S. Takagi, A. Toriumi, M. Iwase, H. Tango, IEEE Trans. Electron Devices 41, 2357 (1994)

    Article  Google Scholar 

  5. M. van Dort et al., IEEE Trans. Electron Devices 39, 932 (1992)

    Article  Google Scholar 

  6. S. Hareland et al., IEEE Trans. Electron Devices 43, 90 (1996)

    Article  Google Scholar 

  7. S. Takagi, A. Toriumi, IEEE Trans. Electron Devices 42, 2125 (1995)

    Article  Google Scholar 

  8. K. Krisch, J. Bude, L. Manchanda, IEEE Electron Device Lett. 11, 521 (1997)

    Google Scholar 

  9. T. Kuhn, F. Rossi, Phys. Rev. B 46, 7496 (1992)

    Article  Google Scholar 

  10. R. Lake, G. Klimeck, R. Bowen, D. Javanivic, J. Appl. Phys. 81, 7845 (1997)

    Article  Google Scholar 

  11. D. Vasileska, D. Ferry, IEEE Trans. Electron Devices 44, 577 (1997)

    Article  Google Scholar 

  12. W. Frensley, Rev. Mod. Phys. 62, 745 (1990)

    Article  Google Scholar 

  13. P. Bordone et al., Phys. Stat. Sol. B 204, 303 (1997)

    Article  Google Scholar 

  14. M. Fischetti, S. Laux, Phys. Rev. B 48, 2244 (1993)

    Article  Google Scholar 

  15. M. van Dort, P. Woerlee, A. Walker, Solid State Electron. 37, 411 (1994)

    Article  Google Scholar 

  16. A. Spinelli, A. Benvenuti, A. Pacelli, IEDM Tech. Dig. (1996), p. 399

    Book  Google Scholar 

  17. S.-H. Lo, D. Buchanan, Y. Taur, W. Wang, IEEE Electron Device Lett. 18, 209 (1997)

    Article  Google Scholar 

  18. J. Lopez-Villanueva et al, IEEE Trans. Electron Devices 44, 1915 (1997)

    Article  Google Scholar 

  19. C. Bowen et al, IEDM Tech. Dig. (1997), p. 869

    Chapter  Google Scholar 

  20. M. Fischetti, S. Laux, D. DiMaria, Appl. Surf. Sci. 32, 578 (1989)

    Article  Google Scholar 

  21. S. Jallepalli et al, IEEE Trans. Electron Devices 44, 297 (1997)

    Article  Google Scholar 

  22. G. Strang, G. Fix, An analysis of the finite element method (Prentice-Hall, Englewood Cliffs, N.J., 1973)

    MATH  Google Scholar 

  23. O. Zienkiewicz, The finite element method ( McGraw-Hill, London, 1977 )

    MATH  Google Scholar 

  24. F. Stern, W. Howard, Phys. Rev. 163, 816 (1967)

    Article  Google Scholar 

  25. F. Stern, Phys. Rev. B 5, 4891 (1972)

    Article  Google Scholar 

  26. A. Abramo, J. Bude, F. Venturi, M. Pinto, IEEE Electron Device Lett. 17, 59 (1996)

    Article  Google Scholar 

  27. F. Balestra et al, IEEE Electron Device Lett. 8, 410 (1987)

    Article  Google Scholar 

  28. J. Colinge et al, IEDM Tech. Dig. (1990), p. 595

    Google Scholar 

  29. D. Frank, S. Laux, M. Fischetti, IEDM Tech. Dig. (1992), p. 553

    Google Scholar 

  30. C. Fiegna et al., IEEE Trans. Electron Devices 41, 941 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag/Wien

About this paper

Cite this paper

Abramo, A., Fiegna, C., Casarini, P. (1998). Quantum effects in the simulation of conventional devices. In: De Meyer, K., Biesemans, S. (eds) Simulation of Semiconductor Processes and Devices 1998. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6827-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6827-1_33

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7415-9

  • Online ISBN: 978-3-7091-6827-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics