Skip to main content

Regeneration in the Central Nervous System: Concepts and Facts

  • Chapter
Advances and Technical Standards in Neurosurgery

Part of the book series: Advances and Technical Standards in Neurosurgery ((NEUROSURGERY,volume 16))

Abstract

In many years, based on Cajal’s statement “… nerve paths are fixed, ended, immutable. Everything may die, nothing may be regenerated…” (Ramon y Cajal 1928) it has been assumed that the central nervous system (CNS) is unable to regenerate a lesioned pathway. Current opinion is in many instances the opposite (Liu and Chambers 1958; Fuxe et al. 1974; Cotman 1978; Björklund and Stenevi 1979). There is now a general belief in possible regeneration in the CNS, even if clearcut results remain scarce (Finger and Almli 1985; Berry 1985). In fact, in some cases, functional recovery after a CNS lesion has been observed and correlated with a morphological readjustment of the neural circuitry. However, a cause-effect link between morphological and functional recovery has not yet been provided, at least not beyond any doubt (Finger and Almli 1985). Since, as a general rule, for both invertebrates and vertebrates, there is little or no further generation of nerve cells in the mature brain, the morphological recovery observed after a lesion must rely on the ability of neurons to form new processes and new contacts (Raisman and Field 1973; Goldberg 1980; Veraa and Grafstein 1981). In fact, neuronal connections are in a dynamic state (morphological plasticity), since also in physiological conditions in the mature brain they are subjected to continuous remodelling (Björklund and Stenevi 1979; Cotman et al. 1981; Cotman and Nieto-Sampedro 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnati LF, Fuxe K, Calza L, Benfenati F, Cavicchioli L, Toffano G, Goldstein M (1983) Gangliosides increase the survival of lesioned nigral dopamine neurons and favour the recovery of dopaminergic synaptic function of rats by collateral sprouting. Acta Physiol Scand 119: 347–363

    PubMed  CAS  Google Scholar 

  2. Agnati LF, Fuxe K, Benfenati F, Zini L, Zoli M, Fabbri L, Härfstrand A (1984a) Computer assisted morphometry and microdensitometry of transmitter identified neurons with special reference to the mesostriatal dopamine pathway. I. Methodological aspects. Acta Physiol Scand [Suppl] 532: 5–36

    CAS  Google Scholar 

  3. Agnati LF, Fuxe K, Calza L, Goldstein M, Toffano G, Giardino L, Zoli M (1984b) Computer assisted morphometry and microdensitometry of transmitter identified neurons with special reference to the mesostriatal dopamine pathway. II. Further studies on the effects of the GM 1 ganglioside on the degenerative and regenerative features of mesostriatal dopamine neurons. Acta Physiol Scand [Suppl] 532: 37–42

    CAS  Google Scholar 

  4. Agnati LF, Fuxe K, Benfenati F, Zoli M, Owman C, Diemer NH, Kâhrström JK, Toffano G, Cimino M (1985a) Effects of ganglioside GM 1 treatment on striatal glucose metabolism, blood flow, and protein phosphorylation of the rat. Acta Physiol Scand 125: 43–53

    CAS  Google Scholar 

  5. Agnati LF, Fuxe K, Davalli P, Zini I, Corti A, Zoli M (1985b) Striatal ornithine decarboxylase activity following neurotoxic and mechanical lesions of the mesostriatal dopamine system of the male rat. Acta Physiol Scand 125: 173–175

    CAS  Google Scholar 

  6. Agnati LF, Fuxe K, Toffano G, Calza L, Zini I, Giardino L, Mascagni F, Goldstein M (1985c) Effects of chronic GM 1 ganglioside treatment on nigral dopamine cell bodies and dendrites in experimental rats using image analysis. Relationship to the pharmacological properties. In: Agnati LF, Fuxe K (eds) Quantitative neuroanatomy in transmitter research. Macmillan Press, London, pp 145–156

    Google Scholar 

  7. Agnati LF, Fuxe K, Zini I, Davalli P, Corti A, Calza L, Toffano G, Zoli M, Piccinini G, Goldstein M (1985d) Effects of lesions and ganglioside GM 1 treatment on striatal polyamine levels and nigral DA neurons. A role of putrescine in the neurotropic activity of gangliosides. Acta Physiol Scand 124: 499–506

    CAS  Google Scholar 

  8. Agnati LF, Fuxe K, Zoli M, Davalli P, Corti A, Zini I, Toffano G (1985e) Effects of neurotoxic and mechanical lesions of the mesostriatal dopamine pathway on striatal polyamine levels in the rat: modulation by chronic ganglioside GM 1 treatment. Neurosci Lett 61: 339–344

    CAS  Google Scholar 

  9. Agnati LF, Fuxe K, Zoli M, Merlo Pich E, Benfenati F, Zini I, Goldstein M (1986a) Aspects on the information handling by the central nervous system: focus on cotransmission in the aged rat brain. In: Hökfelt T, Fuxe K, Pernow B (eds) Coexistence of neuronal messengers: a new principle in chemical transmission. Prog Brain Res, vol 68. Elsevier, Amsterdam, pp 291–301

    Google Scholar 

  10. Agnati LF, Fuxe K, Zoli M, Zini I, Toffano G, Ferraguti F (1986b) A correlation analysis of the regional distribution of central enkepahlin and 13- endorphin immunoreactive terminals and of opiate receptors in adult and old male rats. Evidence for the existence of two main types of communication in the central nervous system: the volume transmission and the wiring transmission. Acta Physiol Scand 128: 201–207

    CAS  Google Scholar 

  11. Aguayo AJ (1985) Capacity for renewed axonal growth in the mammalian central nervous system. In: Bignami A, Bloom FE, Bolis CL, Adeloye A (eds) Central nervous system plasticity and repair. Raven Press, New York, pp 31–40

    Google Scholar 

  12. Aguayo AJ, Dikson R, Trecarten J, Attwell M, Bray GM, Richardson P (1978) Ensheathment and myelination of regenerating PNS fibers by transplanted optic nerve glia. Neurosci Lett 9: 97–104

    PubMed  CAS  Google Scholar 

  13. Aguayo AJ, Bray GM, Perkins CS, Duncan ID (1979) Axon-sheath cell interactions in peripheral and central nervous system transplant. Soc Neurosci Symp 4: 361–383

    Google Scholar 

  14. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD (1983) Molecular biology of the cell. Garland Publishing Inc, New York

    Google Scholar 

  15. Austin L (1985) Molecular aspect of nerve regeneration. In: Lajtha A (ed) Handbook of neurochemistry. Plenum Press, New York, pp 1–29

    Google Scholar 

  16. Barbin G, Manthorpe M, Varon S (1984) Purification of the chick eye Ciliary Neuronotrophic Factor (CNTF). J Neurochem 43: 1468–1478

    PubMed  CAS  Google Scholar 

  17. Bachrach U (1973) Function of naturally occurring polyamines. Academic Press, New York

    Google Scholar 

  18. Barde YA, Edgar D, Thoenen H (1982) Purification of a new neuronotrophic factor from mammalian brain. EMBO J 1: 549–553

    PubMed  CAS  Google Scholar 

  19. Benoit P, Changeux JP (1978) Consequences of blocking the nerve with a local anaesthetic on the evolution of multi-innervation in developing rat soleus muscle. Brain Res 149: 89–96

    PubMed  CAS  Google Scholar 

  20. Berg KD (1984) New neuronal growth factors. Ann Rev Neurosci 7: 149–170

    PubMed  CAS  Google Scholar 

  21. Berry M (1982) Post-injury myelin-breakdown products inhibit axonal growth: an hypothesis to explain the failure of axonal regeneration in the mammalian central nervous system. In: Berry N (ed) Growth and regeneration of axon in the nervous system. Bibliotheca Anatomica, vol 23. Karger, Basel, pp 1–11

    Google Scholar 

  22. Berry M (1985) Regeneration and plasticity in the CNS. In: Swash M, Kennard C (eds) Scientific basis of clinical neurology. Churchill Livingstone, London, pp 658–679

    Google Scholar 

  23. Bernstein JJ, Bernstein ME (1967) Effect of glia-ependymal scar and teflon arrest on the regeneration capacity of goldfish spinal cord. Exp Neurol 19: 25–32

    PubMed  CAS  Google Scholar 

  24. Bernstein JJ, Bernstein ME (1973) Neuronal alteration and reinnervation following axonal regeneration and sprouting in mammalian cord. Brain Behav Evol 8: 135–161

    PubMed  CAS  Google Scholar 

  25. Bessou P, Laporte Y, Pages B (1966) Observation sur la re-innervation de fuseaux neuro-musculaires de chat. CR Soc Biol, Paris 160: 408–411

    CAS  Google Scholar 

  26. Björklund A, Stenevi U (1979) Regeneration of monoaminergic and cholinergic neurons in the mammalian central nervous system. Physiol Rev 59: 62–100

    PubMed  Google Scholar 

  27. Björklund A, Dunnett SB, Stenevi U, Lewis ME, Iversen SD (1980) Rein-nervation of the denervated striatum by substantia nigra transplants: functional consequences as revealed by pharmacological sensorimotor testing. Brain Rés 199: 307–333

    PubMed  Google Scholar 

  28. Björklund A, Stenevi U (1984) Intracerebral neural implant: neuronal replacement and reconstruction of damaged circuitries. Ann Rev Neurosci 7: 279–308

    PubMed  Google Scholar 

  29. Bijlsma WA, Jennekens FGI, Schotman P, Gispen WH (1982) Stimulation by ACTH(4–10) of nerve fibre regeneration following sciatic nerve crush. Muscle and Nerve 6: 102–110

    Google Scholar 

  30. Carpenter G, Cohen S (1978) Epidermal growth factor. In: Litwak G (ed) Biochemical actions of hormones. Academic Press Inc, New York, pp 203–247

    Google Scholar 

  31. Cintra A, Fuxe K, Agnati LF, Persson L, Härfstrand A, Zoli M, Eneroth P, Zini I (1987) Evidence for the existence of ornithine decarboxylase-immunoreactive neurons in the rat brain. Neurosci Lett 76: 269–274

    PubMed  CAS  Google Scholar 

  32. Clark WE LeGros (1943) The problem of neuronal regeneration in the central nervous system. II. The insertion of peripheral stumps into the brain. J Anat 73: 251–259

    Google Scholar 

  33. Clemente CD (1964) Regeneration in the vertebrate central nervous system. Int Rev Biol 6: 257–301

    CAS  Google Scholar 

  34. Cohen SS (1971) Introduction to the polyamines. Prentice Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  35. Cotman CW (1978) Neuronal plasticity. Raven Press, New York

    Google Scholar 

  36. Cotman CW, Nieto-Sampedro M, Harris EW (1981) Synapse replacement in the nervous system of adult vertebrates. Physiol Rev 61: 684–784

    PubMed  CAS  Google Scholar 

  37. Cotman CW, Nieto-Sampedro M (1984) Cell biology of synaptic plasticity. Science 225: 1287–1294

    PubMed  CAS  Google Scholar 

  38. Cowan WM, Fawcett JW, O’Leary DM, Stanfield BB (1984) Regressive events in neurogenesis. Science 225: 1258–1265

    PubMed  CAS  Google Scholar 

  39. Crutcher KA, Collins F (1982) In vitro evidence for two distinct hippocampal growth factors: basis of neuronal plasticity? Science 217: 67–70

    PubMed  CAS  Google Scholar 

  40. Cuello AC, Stephens PH, Sofroniew MV, Pearson RCA, Tagari P, Powell TP (1985) Effects of gangliosides on cholinergic neurones of the nucleus basalis following unilateral cortical lesion. In: Neuronal plasticity and gangliosides. International Society for Neurochemistry, Mantova, Italy, May 29–31, pp 49

    Google Scholar 

  41. Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand 62 [Suppl] 232: 1–55

    Google Scholar 

  42. Dahlström A, Fuxe K (1965) Evidence for the existence of monoamine-containing neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta Physiol Scand 64 [Suppl] 247: 1–36

    Google Scholar 

  43. David S, Aguayo AJ (1981) Axonal elongation into peripheral neurons system “bridges” after central nervous system injury in adult rats. Science 214: 931–933

    PubMed  CAS  Google Scholar 

  44. Davis GE, Skaper SD, Manthorpe M, Moonen G, Varon S (1984) Serum-mediated inhibition of neurite growth from ciliary ganglion neurons in vitro. J Neurosci Res 12: 29–40

    PubMed  CAS  Google Scholar 

  45. Doolittle RF, Hunkapiller MW, Hood LE, Davare SG, Robbins KC, Aaronson SA, Hantoniades HN (1983) Simian sarcoma virus ONC gene vsis is derived from the gene (or genes) encoding a platelet-derived growth factor. Science 221: 275–277

    PubMed  CAS  Google Scholar 

  46. Dunnett SB, Björklund A, Stenevi U, Iversen SD (1981) Behavioural recovery following transplantation of substantia nigra in rats subjected to 6OHDA lesions of the nigrostriatal pathway. I. Unilateral lesions. Brain Res 215: 147–161

    PubMed  CAS  Google Scholar 

  47. Edwards PM, Van der Zee CEEM, Verhaagen J, Schotman FGI, Jennekens FGI, Gispen WH (1984) Evidence that the neurotrophic actions of a-MSH may derive from its hability to mimic the actions of a polypeptide formed in degeneration nerve stumps. J Neurol Sci 64: 333–340

    PubMed  CAS  Google Scholar 

  48. Edwards PM, Verhaagen J, Spierings T, Schotman P, Jennekens FGI, Gispen WH (1985) The effect of ACTH4–10 on protein synthesis, actin and tubulin during regeneration. Brain Res Bull 15: 267–272

    PubMed  CAS  Google Scholar 

  49. Ek B, Wastermark B, Wateson A, Heldin CH (1982) Stimulation of tyrosine-specific phosphorylation by platelet-derived growth factor. Nature (London) 295: 419–420

    CAS  Google Scholar 

  50. Fallon JH, Seroogy KB, Loughlin SE, Morrison RS, Bradshaw RA, Knauer DJ, Cunningham DD (1984) Epidermal Growth Factor immunoreactive material in the central nervous system: location and development. Science 224: 1107–1109

    PubMed  CAS  Google Scholar 

  51. Finger S, Almli CR (1985) Brain damage and neuroplasticity: mechanism of recovery or development? Brain Res Rev 10: 177–186

    Google Scholar 

  52. Fuxe K, Jonsson G, Nygren LG, Olson L (1974) Studies on central 5hydroxytriptamine neurons using dihydroxytriptamines: evidence for regeneration of bulbospinal 5-hydroxytriptamine axons and terminals. In: Fuxe K, Olson L, Zotterman Y (eds) Dynamics of degeneration and growth of neurons. Pergamon Press, London, pp 169–179

    Google Scholar 

  53. Gash D, Sladek J (1980) Functional development of grafted vasopressin neurons. Science 210: 1367–1369

    PubMed  CAS  Google Scholar 

  54. Gearhart J, Oster-Granite ML, Guth L (1979) Histological and functional changes after transection of the spinal cord of fetal and neonatal mice. Exp Neurol 66: 1–15

    PubMed  CAS  Google Scholar 

  55. Gilad GM, Gilad VH (1983) Polyamine biosynthesis is required for survival of sympathetic neurons after axonal injury. Brain Res 273: 191–194

    PubMed  CAS  Google Scholar 

  56. Gnahn H, Hefti F, Heumann R, Schwab ME, Thoenen H (1983) NGF mediated increase of choline acetyltransferase (ChAT) in the neonatal rat forebrain: evidence for a physiological role for NGF in the brain? Dev Brain Res 9: 45–52

    CAS  Google Scholar 

  57. Goedert M, Fine A, Hunt SP, Ullrich A (1986) Nerve Growth Factor mRNA in peripheral and central rat tissues and in the human central nervous system: lesion effects in the rat brain and levels in Alzheimer disease. Mol Brain Res 1: 85–92

    Google Scholar 

  58. Goldberg ME (1980) Motor recovery after lesion. Trends Neurosci 29: 288–291

    Google Scholar 

  59. Gospodarowicz D, Cheng J, Lui GM, Baird A, Bohlent P (1984) Isolation of brain fibroblast growth factor by heparin-Sephadex affinity chromatography: identity with pituitary fibroblast growth factor. Proc Natl Acad Sci USA 81: 6963–6967

    PubMed  CAS  Google Scholar 

  60. Gutmann E, Young JZ (1944) Reinnervation of muscle after various periods of atrophy. J Anat 78: 1543–1544

    Google Scholar 

  61. Hansson HA, Dahlin LB, Danielsen N, Fryklund L, Nachemson AK, Polleryd P, Rozell B, Skottner A, Stemme S, Lundborg GL (1986) Evidence indicating trophic importance of IGF-I in regenerating peripheral nerves. Acta Physiol Scand 126: 609–614

    PubMed  CAS  Google Scholar 

  62. Hefti F (1986) Nerve Growth Factor promotes survival of septal cholinergic neurons after fimbrial transections. J Neurosci 6: 2155–2162

    PubMed  CAS  Google Scholar 

  63. Herrera-Marschitz M, Stromberg I, Olsson D, Ungerstedt U, Olson L (1984) Adrenal medullary implants in the dopamine-denervated rat striatum. II. Acute behavior as a function of graft amount of location and its modulation by neuroleptics. Brain Res 297: 53–61

    PubMed  CAS  Google Scholar 

  64. Herschman HR (1986) Polypeptide growth factors and the CNS. Trends Neurosci 91: 53–57

    Google Scholar 

  65. Hess A (1956) Reactions of mammalian fetal spinal cord, spinal ganglia and brain to injury. J Exp Zool 132: 349–374

    Google Scholar 

  66. Hilbig R, Lauke G, Rahmann H (1983/84) Brain gangliosides during the life span (embryogenesis to senescence) of the rat. Dev Neurosci 6: 260–270

    PubMed  Google Scholar 

  67. Hosobuchi Y, Baskin DS, Woo SK (1982) Reversal of induced ischemic neurologic deficit in gerbils by the opiate antagonist naloxone. Science 215: 69–71

    PubMed  CAS  Google Scholar 

  68. Huff KR, Schreier W (1985) Modulation of astrocyte responses by Epidermal Growth Factor, Fibroblast Growth Factor and Platelet-Derived Growth Factor. In: Society for Neuroscience, 15th annual meeting. Dallas, Texas, pp 291(6)

    Google Scholar 

  69. Jackson PC (1983) Reduced activity during development delays the normal rearrangement of synapses in the rabbit ciliary ganglion. J Physiol (London) 345: 319–327

    CAS  Google Scholar 

  70. Jacob H (1963) CNS tissue and cellular pathology. In: Schade P, McMenemy B (eds) Selective vulnerability of the brain in hypoxemia. Davis Co, Philadelphia, pp 153–174

    Google Scholar 

  71. Jacobson M (1978) Developmental neurobiology. Plenum Press, New York

    Google Scholar 

  72. Janson AM, Agnati LF, Kitayama I, Härfstrand A, Andersson K, Goldstein M, Fuxe K (1988) Chronic nicotine treatment counteracts the disappearance of tyrosine-hydroxylase immunoreactive nerve cell bodies, dendrites and terminals in the mesostriatal DA system of the male rat after partial hemitransection. Brain Res, in press.

    Google Scholar 

  73. Jonsson G, Sachs C, (1972) Neurochemical properties of adrenergic nerves regenerated after 6-hydroxy-dopamine. J Neurochem 19: 2577–2585

    PubMed  CAS  Google Scholar 

  74. Jonsson G, Pycock C, Sachs C (1973) Plastic changes of central noradrenergic neurons after 6-hydroxydopamine. In: Usdin E, Snyder S (eds) Frontiers in catecholamine research. Pergamon Press, New York, pp 459–461

    Google Scholar 

  75. Jonsson G, Pycock C, Fuxe K, Sachs C (1974) Changes in the development of central noradrenaline neurons following neonatal administration of 6hydroxydopamine. J Neurochem 22: 621–626

    Google Scholar 

  76. Jonsson G, Gorio A, Hallman D, Janigro H, Kojima H, Luthman J, Zanoni R (1984) Effects of GM 1 Ganglioside on developing and mature serotonin and noradrenaline neurons lesioned by selective neurotoxins. J Neurosci Res 12: 459–475

    PubMed  CAS  Google Scholar 

  77. Kalil K, Reh T (1979) Regrowth of severed axons in the neonatal central nervous system: establishment of normal connections. Science 205: 1158–1161

    PubMed  CAS  Google Scholar 

  78. Kandel ER (1985) Synapse formation, trophic interactions between neurons and the development of behavior. In: Kandel ER, Schwartz JH (eds) Principles of neural science, 2nd edition. Elsevier, New York

    Google Scholar 

  79. Karpiak SE (1983) Accelerated functional development in the rat neonate following ganglioside administration. In: The cell biology of neuronal plasticity, Fidia Research Series/Frontiers in Neuroscience, n. 1, pp 91–92

    Google Scholar 

  80. Karsarskis J, Karpiak SE, Rapport MM, Yu RK, Bass NH (1981) Abnormal maturation of cerebral cortex and behavioral deficit in adult rats after neonatal administration of antibodies to gangliosides. Dev Brain Res 1: 25–35

    Google Scholar 

  81. Kiernan JA (1979) Hypotheses concerned with axonal regeneration in the mammalian nervous system. Biol Rev 54: 155–197

    PubMed  CAS  Google Scholar 

  82. Kligman D (1982) Isolation of a protein from bovine brain which promotes neurite extension from chick embryo cerebral cortex neurons in definite medium. Brain Res 250: 93–100

    PubMed  CAS  Google Scholar 

  83. Kogure K, Siesjö BK, Welsh FA (1985) Molecular mechanism of ischemic brain damage. Prog Brain Res, vol 63. Elsevier Press, New York

    Google Scholar 

  84. Kojima H, Gorio A, Janigro D, Jonsson G (1984) GM 1 ganglioside enhances regrowth of noradrenaline nerve terminals in rat cerebral cortex lesioned by the neurotoxin 6-hydroxydopamine. Neuroscience 13: 1011–1022

    PubMed  CAS  Google Scholar 

  85. König JFR, Klippel RE (1963) The rat brain. A stereotaxic atlas of the forebrain and lower parts of the brain stem. Williams and Wilkins Co, Baltimore

    Google Scholar 

  86. Korsching S (1986) The role of nerve growth factor in the CNS. Trends Neurosci 101/102: 570–574

    Google Scholar 

  87. Korshing S, Thoenen H (1983) Nerve Growth Factor in sympathetic ganglia and corresponding target organs of the rat: correlation with density of sympathetic innervation. Proc Natl Acad Sci USA 80: 3513–3516

    Google Scholar 

  88. Korshing S, Heumann R, Thoenen M, Hefti F (1986) Cholinergic denervation of rat hippocampus by fimbriae transection leads to a transient accumulation of nerve growth factor (NGF) without changes in mRNA NGF contents. Neurosci Lett 66: 175–180

    Google Scholar 

  89. Ledeen R (1985) Gangliosides of the neurons. Trends Neurosci 86: 169–174

    Google Scholar 

  90. Leon A, Benvegnú D, Dal Toso R, Presti D, Facci L, Giorgi O, Toffano G (1984) Dorsal root ganglia and nerve growth factor: a model for understanding the mechanism of GM 1 effects on neuronal repair. J Neurosci Res 12: 277–287

    PubMed  CAS  Google Scholar 

  91. Levi-Montalcini R (1982) Developmental neurobiology and the natural history of Nerve Growth Factor. Ann Rev Neurosci 5: 341–361

    PubMed  CAS  Google Scholar 

  92. Levi-Montalcini R, Hamburger V (1951) Selective growth-stimulating effects of mouse sarcoma on the sensory and sympathetic system of the chick embryo. J Exp Zool 116: 321–362

    PubMed  CAS  Google Scholar 

  93. Levi-Montalcini R, Hamburger V (1953) A diffusible agent of mouse sarcoma producing hyperplasia of sympathetic ganglia and hyperneurotization of the chick embryo. J Exp Zool 123: 233–288

    Google Scholar 

  94. Levi-Montalcini R, Angeletti PU (1968) Nerve Growth Factor. Physiol Rev 48: 535–569

    Google Scholar 

  95. Levi-Montalcini R, Calissano P (1986) Nerve Growth Factor as a paradigm of other polypeptide growth factors. Trends Neurosci 100: 473–477

    Google Scholar 

  96. Lewis ME, Lakshmanan D, Nagaiah K, MacDonnel PC, Guroff G (1978) Nerve Growth Factor increases activity of ornithine decarboxylase. Proc Natl Acad Sci USA 75: 1021–1023

    PubMed  CAS  Google Scholar 

  97. Lindsay RM (1979) Adult rat brain astrocytes support survival of both NGFdependent and NGF-insensitive neurons. Nature 282: 80–82

    PubMed  CAS  Google Scholar 

  98. Liu C-N, Chambers WW (1958) Intraspinal sprouting of dorsal root axons. AMA Arch Neurol Psychiat 79: 46–61

    CAS  Google Scholar 

  99. Longo FM, Selak I, Zovickian J, Manthorpe M, Varon S, U H-S (1984) Neuronotrophic activities in cerebrospinal fluid of head trauma patients. Exp Neurol 84: 207–218

    PubMed  CAS  Google Scholar 

  100. Magistretti PJ, Manthorpe M, Bloom FE, Varon S (1983) Functional receptors for vasointestinal polypeptide in cultured astroglia from neonatal rat brain. Reg Peptides 6: 71–80

    CAS  Google Scholar 

  101. Manthorpe M, Engvall E, Rouslahti E, Longo FM, Davis GE, Varon S (1983a) Laminin promotes neuritic regeneration from cultured peripheral and central neurons. J Cell Biol 97: 1882–1890

    CAS  Google Scholar 

  102. Manthorpe M, Nieto-Sampedro M, Skaper SD, Lewis ER, Barbin G, Longo FM, Cotman CW, Varon S (1983b) Neuronotrophic activity in brain wounds of the developing rat. Correlation with implant survival in the wound cavity. Brain Res 267: 47–56

    CAS  Google Scholar 

  103. Manthorpe M, Varon S (1986) Regulation of neuronal survival and neuronal growth in the avian ciliary ganglion by trophic factors. In: Guroff G (ed) Growth and maturation factors, vol 3. John Wiley and Sons, New York (in press)

    Google Scholar 

  104. Marton LJ, Heby O, Levin VA, Lubich WP, Crafts DC, Wilson CB (1976) The relationship of polyamines in cerebrospinal fluid to the presence of central nervous system tumors. Cancer Res 36: 937–977

    Google Scholar 

  105. Michenfelder JD, Theye RA (1973) Cerebral protection by thiopental during hypoxia. Anaesthesiology 39: 510–517

    CAS  Google Scholar 

  106. Mobely WC, Rutkowski LJ, Temekoon GI, Johnston MU (1986) Nerve Growth Factor increases choline acetyltransferase in developing basal forebrain neurons. Mol Brain Res 1: 53–62

    Google Scholar 

  107. Morrison RS, deVellis J (1981) Growth of purified astrocytes in chronically defined medium. Proc Natl Acad Sci USA 78: 7205–7209

    PubMed  CAS  Google Scholar 

  108. Needels DL, Nieto-Sampedro M, Cotman CW (1986) Induction of a neuritepromoting factor in rat brain following injury or deafferentation. Neuroscience 18: 517–526

    PubMed  CAS  Google Scholar 

  109. Nicholson C (1980) Measurements of extracellular ions in the brain. Trends Neurosci 215–218

    Google Scholar 

  110. Nieto-Sampedro M, Lewis ER, Cotman CW, Manthorpe M, Skaper SD, Barbin G, Longo FM, Varon S (1982) Brain injury causes a time-dependent increase in neuronotrophic activity at the lesion site. Science 217: 860–861

    PubMed  CAS  Google Scholar 

  111. Nilsson J, vonEuler AM, Dalsgaard CJ (1985) Stimulation of connective tissue cell growth by substance P and substance K. Nature (London) 315: 61–63

    CAS  Google Scholar 

  112. Noble M, Fok-Seang J, Cohen J (1984) Glia are a unique substrate for the in vitro growth of central nervous system neurons. J Neurosci 4: 1892–1904

    PubMed  CAS  Google Scholar 

  113. Nyakas C, Veldhuis DH, DeWied D (1985) Beneficial effect of chronic treatment with Org2766 and a-MSH on impaired reversal learning of rats with bilateral lesions of parafascicular area. Brain Res Bull 15: 257–265

    PubMed  CAS  Google Scholar 

  114. Nygren LG, Olson L, Seiger A (1971) Regeneration of monoamine containing axons in the developing and adult spinal cord of the rat following intraspinal 6-OH-dopamine injections or transections. Histochemie 28: 1–15

    PubMed  CAS  Google Scholar 

  115. Oderfeld-Novak B, Wojcik M, Ulas J, Potempska A (1984) Effects of chronic ganglioside treatment on recovery processes in hippocampus after brain lesion in rats. In: Rapport MM, Glorio A (eds) Gangliosides in neurological and neuromuscular function, development and repair. Raven Press, New York, pp 85–95

    Google Scholar 

  116. O’Keefe E, Cuatrecasas P (1977) Persistence of exogenous inserted gangli-oside GM 1 on the cell surface of cultured cells. Life Sci 21: 1649–1653

    PubMed  Google Scholar 

  117. Olson L, Malmfors T (1970) Growth characteristics of adrenergic nerves in adult rats. Fluorescence histochemistry and 3 H-noradrenaline uptake studies using tissue transplants to the anterior chamber of the eye. Acta Physiol Scand [Suppl] 348: 1–112

    CAS  Google Scholar 

  118. Olson L, Seiger A (1972) Early prenatal ontogeny of central monoamine neurons in the rat: fluorescence histochemical observations. Z Anat Entwickl Gesch 137: 301–316

    CAS  Google Scholar 

  119. Olson L (1985) On the use of transplants to counteract the symptoms of Parkinson disease: background, experimental models and possible clinical applications. In: Cotman CW (ed) Synaptic plasticity and remodelling. Guilford Press, New York, pp 485–505

    Google Scholar 

  120. Purves D, Lichtman JW (1985) Principles of neuronal development. Sinauer Ass Inc, Sunderland

    Google Scholar 

  121. Raisman G, Field PM (1973) A quantitative investigation of the development of collateral reinnervation after partial deafferentation of the septal nuclei. Brain Res 50: 241–264

    PubMed  CAS  Google Scholar 

  122. Raizada MK (1983) Localization of insulin-like immunoreactivity in the neurons from primary cultures of rat brain. Exp Cell Res 143: 351–359

    PubMed  CAS  Google Scholar 

  123. Ramon y Cajal S (1954) Neuronal theory or reticular theory?, Objective evidence of the anatomical unit of nerve cells (1908). In: Purkiss MU, Fox CA (eds) Consejo Superior de Investigaciones Cientifica, Inst S Ramon y Cajal, Madrid

    Google Scholar 

  124. Ramon y Cajal S (1928) Degeneration and regeneration in the nervous system. Oxford University Press, London

    Google Scholar 

  125. Rapport MM, Gorio A (eds) Gangliosides in neurological and neuromuscular function, development and repair. Raven Press, New York

    Google Scholar 

  126. Reh T, Kalil K (1981) Development of the pyramidal tract in the hamster. I. A light microscope study. J Comp Neurol 200: 55–67

    PubMed  CAS  Google Scholar 

  127. Reims S (1965) Contribution to the problem of the regeneration of nerve fibres in the central nervous system after operative damage in the early postnatal period. Acta Anat 60: 165–180

    Google Scholar 

  128. Rogers LR, Lotourneau PC, Palm SL, McCarthy J, Furcht LT (1983) Neurite extension by peripheral and central nervous system neurons in response to substratum-bound fibronectin and laminin. Dev Biol 98: 212–220

    PubMed  CAS  Google Scholar 

  129. Rosengurt E, Sinnet-Smith J (1983) Bombesin stimulation of DNA synthesis and division in cultures of Swiss 3T3 cells. Proc Natl Acad Sci USA 80: 2936–2940

    Google Scholar 

  130. Rothman SM (1983) Synaptic activity mediates death of hypoxic neurons. Science 220: 536–537

    PubMed  CAS  Google Scholar 

  131. Sabel BA, Slavin MD, Stein D (1984) GM 1 ganglioside treatment facilitates behavioral recovery from bilateral brain damage. Science 225: 340–342

    PubMed  CAS  Google Scholar 

  132. Saji M, Reis DJ (1987) Delayed transneuronal death of substantia nigra neurons prevented by y-aminobutyric acid agonist. Science 235: 66–69

    PubMed  CAS  Google Scholar 

  133. Sanes JR, Marshall LM, McMahan UJ (1980) Reinnervation of skeletal muscle: restoration of the normal synaptic pattern. In: Jewett DL, McCarrol HR (eds) Nerve repair and regeneration: its clinical and experimental basis. Mosby, St Louis, pp 130–138

    Google Scholar 

  134. Sapolski RM (1985) A mechanism for glucocorticoid toxicity in the hippocampus increased neuronal vulnerability to metabolic insults. J Neurosci 5: 1228–1232

    Google Scholar 

  135. Sara VR, Hall K, Mishaki M, Fryklund L, Christensen N, Wetterberg L (1983) Ontogenesis of somatomedin and insulin receptor in human fetus. J Clin Invest 71: 1084–1094

    PubMed  CAS  Google Scholar 

  136. Savage CR Jr, Inagami T, Cohen S (1972) The primary structure of epidermal growth factor. J Biol Chem 247: 7612–7621

    PubMed  CAS  Google Scholar 

  137. Scalabrino G, Ferioli M (1984) Polyamines in mammalian ageing: an oncological problem, too? A review. Mech Ageing Develop 26: 149–164

    CAS  Google Scholar 

  138. Schmidt RH, Björklund A, Stenevi U (1981) Intracerebral grafting of dissociated CNS tissue suspensions: a new approach for neuronal transplantion to deep brain sites. Brain Res 218: 347–356

    PubMed  CAS  Google Scholar 

  139. Schmidt RH, Ingvar M, Lindvall O, Stenevi U, Björklund A (1982) Functional activity of substantia nigra grafts reinnervating the striatum: neurotransmitter metabolism and 14C-2-deoxi-D-glucose autoradiography. J Neurochem 38: 737–748

    PubMed  CAS  Google Scholar 

  140. Schneider GE, Jhavary SR (1974) Neuroanatomical correlates of spared or altered functions after brain lesions in the newborn hamster. In: Stein SD, Rosen JJ, Butters N (eds) Plasticity and recovery of function in the central nervous system. Academic Press, New York, pp 65–110

    Google Scholar 

  141. Schwartz M, Spirman N (1982) Sprouting from chicken embryo dorsal root ganglia induced by nerve growth factor is specifically inhibited by affinity-purified antiganglioside antibody. Proc Natl Acad Sci USA 79: 6080–6083

    PubMed  CAS  Google Scholar 

  142. Schwartzberg DG, Nakane PK (1982) Ontogenesis of adrenocorticotropinrelated peptide determinants in the hypothalamus and pituitary gland of the rat. Endocrinology 110: 855–864

    PubMed  CAS  Google Scholar 

  143. Seiger A, Olson L (1973) Late prenatal ontogeny of central monoamine neurons in the rat: fluorescence histochemical observations. 2. Anat Entwickl Gesch 140: 281–318

    CAS  Google Scholar 

  144. Seiler N (1981) Polyamine metabolism and function in the brain. Neurochem Int 3: 95–110

    PubMed  CAS  Google Scholar 

  145. Seiler N, Lamberty U (1975) Interrelations between polyamines and nucleic acids: changes of polyamine and nucleic acid concentrations in the developing rat brain. J Neurochem 24: 5–13

    PubMed  CAS  Google Scholar 

  146. Seiler N, Schwab ME (1984) Specific retrograde transport of nerve growth factor (NGF) from neocortex to nucleus basalis in the rat. Brain Res 300: 33–39

    PubMed  CAS  Google Scholar 

  147. Selak I, Skaper SD, Varon S (1983) Age-dependent requirements of sympathetic neurons in serum-free culture. Dev Brain Res 7: 171–179

    Google Scholar 

  148. Selak I, Skaper SD, Varon S (1985) Pyruvate partecipation in the low molecular weight trophic activity for CNS neurons in glia-contained media. J Neurosci 5: 23–28

    PubMed  CAS  Google Scholar 

  149. Shaw GG (1979) The polyamines in the central nervous system. Biochem Pharmacol 28: 1–6

    PubMed  CAS  Google Scholar 

  150. Shelton DL, Reichardt L (1986) Studies on the expression of the nerve growth factor (NGF) gene in the central nervous system: level and regional distribution of NGF mRNA suggest that NGF functions as trophic factor for several distinct populations of neurons. Proc Natl Acad Sci USA 83: 2714–2718

    PubMed  CAS  Google Scholar 

  151. Skaper SD, Selak I, Varon S (1983) Serum and substratum-dependent modulation of neuritic growth. J Neurosci Res 9: 359–369

    PubMed  CAS  Google Scholar 

  152. Skaper SD, Katoh-Semba R, Varon S (1985) GM 1 ganglioside accelerates neurite outgrowth from primary peripheral and central neurons under selected culture conditions. Dev Brain Res 23: 19–26

    CAS  Google Scholar 

  153. Skaper SD, Varon S (1986) Age-dependent control of dorsal root ganglion neuron survival by macromolecular and low-molecular weight trophic agents and substratum-bound laminins. Dev Brain Res 24: 39–46

    CAS  Google Scholar 

  154. So KF, Schneider GE (1976) Abnormal recrossing of retinotectal projections after early lesion in Syrian hamsters: a critical-age effect. Anat Rec 184: 535–536

    Google Scholar 

  155. Steward O (1982) Assessing the functional significance of lesion-induced neuronal plasticity. Int Rev Neurobiol 23: 197–253

    PubMed  CAS  Google Scholar 

  156. Thoenen H, Barde YA (1980) Physiology of Nerve Growth Factor. Physiol Rev 60: 1284–1335

    PubMed  CAS  Google Scholar 

  157. Thompson W (1983) Synapse elimination in neonatal muscle is sensitive to pattern of muscle use. Nature 302: 612–614

    Google Scholar 

  158. Toffano G, Savoini G, Moroni F, Lombardi G, Calza L, Agnati LF (1983) GM 1 ganglioside stimulates the regeneration of dopaminergic neurons in the central nervous system. Brain Res 261: 163–166

    PubMed  CAS  Google Scholar 

  159. Ushiro H, Cohen S (1980) Identification of phosphotyrosine as a product of Epidermal Growth Factor-activated protein kinase in A-431 cell membrane. J Biol Chem 255: 8363–8365

    PubMed  CAS  Google Scholar 

  160. Van Schravendijk CFH, Hooghe-Peters EL, de Meyts P, Pipelers DJ (1984) Identification and characterization of insulin receptors on foetal-mouse brain cortical cells. Biochem J 220: 165–172

    PubMed  Google Scholar 

  161. Varon S (1985) Factors promoting the growth of the nervous system. Discussions in Neurosciences, volt

    Google Scholar 

  162. Varon S, Adler R (1981) Trophic and specific factors directed to neuronal cells. Adv Cell Neurobiol 2: 115–163

    CAS  Google Scholar 

  163. Varon S, Skaper SD, Barbin G, Selak I, Manthorpe M (1984) Low molecular weight agents support survival of cultured neurons from the CNS. J Neurosci 4: 654–658

    PubMed  CAS  Google Scholar 

  164. Varon S, Manthorpe M (1985) In vitro models for neuroplasticity and repair. In: Bignami A, Bloom FE, Bolis CL, Adeloye A (eds) Central nervous system plasticity and repair. Raven Press, New York, pp 13–23

    Google Scholar 

  165. Veraa RP, Grafstein B (1981) Cellular mechanisms for recovery from nervous system injury: a conference report. Exp Neurol 38: 490–497

    Google Scholar 

  166. Vizi ES (1984) Non-synaptic interactions between neurons: modulation of chemical transmission. John Wiley, New York

    Google Scholar 

  167. Walicke P, Varon S, Manthorpe M, Purification of a human red blood cell protein supporting the survival of cultured CNS neurons and its identification as a catalase (manuscript in preparation)

    Google Scholar 

  168. Waterfield MD, Scrace GT, Whittle N, Stroobant P, Johnsson A, Wasteson A, Westermark B, Heldin CH, Huang JS, Deuel TF (1983) Platelet-derived growth factor is structurally related to the putative transforming protein p28-sis of simian sarcoma virus. Nature (London) 304: 31–39

    Google Scholar 

  169. Watson SJ, Richard III CW, Barchas JD (1978) Adrenocorticotropin in rat brain: immunocytochemical localization in cells and axons. Science 200: 1180–1182

    PubMed  CAS  Google Scholar 

  170. Weinberg EL, Spencer PS (1979) Studies on the control of myelinogenesis. 3. Signalling of oligodendrocyte myelination by regenerating peripheral axons. Brain Res 162: 273–279

    PubMed  CAS  Google Scholar 

  171. Williams PL, Warwick R (eds) Gray’s Anatomy. 36th ed, Longman, London 1980

    Google Scholar 

  172. Windle WF (1956) Regeneration of axons in the vertebrate central nervous system. Physiol Rev 36: 427–440

    PubMed  CAS  Google Scholar 

  173. Whittemore SR, Ebendal T, Larkfors L, Olson L, Seiger A, Stromberg I, Persson H (1986) Developmental and regional expression of 13-nerve growth factor messenger RNA and protein in the central nervous system. Proc Natl Acad Sci USA 83: 817–821

    PubMed  CAS  Google Scholar 

  174. Yankner BA, Shooter EM (1982) The biology and mechanism of action of Nerve Growth Factor. Ann Rev Biochem 51: 845–868

    PubMed  CAS  Google Scholar 

  175. Zini I, Zoli M, Agnati LF, Fuxe K, Merlo Pich E, Davalli P, Corti A, Gavioli G, Toffano G (1986) Studies on the involvement of polyamines for the trophic actions of the ganglioside GM 1 in mechanically and 6-hydroxydopamine lesioned rats. Evidence for a permissive role of putrescine. In: Tettamanti G, Ledeen RW, Sandhoff K, Nagai Y, Toffano G (eds) Gangliosides and neuronal plasticity. Springer, New York Heidelberg, Liviana Press, Padova, pp 381–396

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor Paolo Crepax (1920–1974).

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag/Wien

About this chapter

Cite this chapter

Agnati, L.F. et al. (1988). Regeneration in the Central Nervous System: Concepts and Facts. In: Symon, L., et al. Advances and Technical Standards in Neurosurgery. Advances and Technical Standards in Neurosurgery, vol 16. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6954-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6954-4_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7451-7

  • Online ISBN: 978-3-7091-6954-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics