Skip to main content

Neuronal Mechanisms of Pain with Special Emphasis on Visceral and Deep Somatic Pain

  • Conference paper
Pain

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 38))

Abstract

Pain has several dimensions: the sensory-discriminative, the motivational-affective, the cognitive and the motor and autonomic dimension. Each dimension can be roughly identified with certain brain areas. The sensory-discriminative dimension is also called the “nociceptive dimension” or, briefly, “nociception”.

  1. 1.

    Noxious stimuli applied to the skin appear to be encoded quite specifically by certain types of nociceptive afferent units with group III (A) and IV (C) fibers. The impulse activity of these cutaneous primary afferents converges on spinal “nociceptive-specific” neurones, most of which seem to be located in lamina I of the dorsal horn, and together with the nonnociceptive information from the skin on “wide-dynamic range” (multisensory) neurones in the grey matter, most of which are situated in lamina V, but some also in adjacent laminae and lamina I.

  2. 2.

    Many of these “nociceptive-specific” and “wide-dynamic range” neurones project with their axons through the anterolateral tract to the nucleus ventralis posterolateralis (VPL) of the thalamus and also to other thalamic nuclei, to the mesencephalon and to the reticular formation of the brain stem. In the VPL of the thalamus, most neurones with nociceptive input have a wide-dynamic range property, very few are nociceptive-specific.

  3. 3.

    Noxious events leading to deep somatic pain are encoded by thin myelinated (Aδ) and unmyelinated afferent fibers (e.g., from skeletal muscle, tendon and joint capsule). Besides these deep somatic “nociceptive” afferent units, other nonnociptive deep somatic afferent units with fine afferent have been claimed to exist and it is believed that these are involved in functions other than nociception. The specificity of responses of these afferents, with respect to the natural stimuli, is only relative.

  4. 4.

    For the viscera nociceptive spinal visceral afferents, which are only activated when injurious or potentially injurious events in the visceral domain (which may lead to pain) occur, cannot be unambiguously shown to exist. It seems more likely that the activity in the same population of spinal visceral afferents is involved in nociceptive as well as in nonnociceptive sensory functions, in the regulation of visceral organs and in various types of reflexes.

  5. 5.

    No neurones in the spinal grey matter have been found which specifically transmit and process information from fine deep somatic and spinal visceral afferents. This information seems to converge not only on many “wide-dynamic range” (multisensory) spinal neurones but also on some “nociceptive-specific” neurones. Only very limited information on thalamic neurones, with respect to the deep somatic and visceral afferent inputs, is available.

  6. 6.

    With the experimentally evaluated knowledge available, it seems unlikely that the “specificity theory” of Müller and von Frey can be applied to the generation of deep somatic and visceral pain; however, it seems more likely that “intensity” and “pattern mechanisms” are rather more important for the generation of these two types of pain. The way in which the impulses from deep somatic and visceral structures, which are associated with deep somatic and visceral pains, are processed by neuronal mechanisms in the spinal cord, brain stem and thalamus is unknown. It appears probable that “wide-dynamic” range neurones obtaining convergent input from deep somatic structures and viscera are involved in referred pain.

  7. 7.

    Finally, it should be kept in mind that the experimental work on the problem of the biology of pain is taking place essentially at three methodological levels: the structure and location of the neurones involved the physiology of the synaptic events and the impulse in these neurones and the psychology of pain behaviour. Results obtained with these different approaches leads to the description of three classes of associated but not casually linked phenomena. For example, the activity of “nociceptive-specific” neurones does not cause pain but may be associated with it.

Supported by the “Deutsche Forschungsgemeinschaft”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adriaensen H, Gybels J, Handwerker HO, van Hees J (1980) Latencies of chemically evoked discharges in human cutaneous nociceptors and of the concurrent subjective sensations. Neurosci Lett 20: 55 - 59

    Article  PubMed  CAS  Google Scholar 

  2. Adriaensen H, Gybels J, Handwerker HO, van Hees J (1983) Response properties of thin myelinated (A 5) fibers in human skin nerves. J Neurophysiol 49: 111 - 122

    PubMed  CAS  Google Scholar 

  3. Adriaensen H, Gybels J, Handwerker HO, van Hees J (1984) Nociceptor discharges and sensations due to prolonged noxious mechanical stimulation—a paradox. Human Neurobiol 3: 52 - 58

    Google Scholar 

  4. Albe-Fessard D, Berkley KJ, Kruger L, Ralston HJ III, Willis WD (1985) Diencephalic mechanisms of pain sensation. Brain Res Rev 9: 217 - 296

    Article  Google Scholar 

  5. Bahns E, Ernsberger U, Janig W, Nelke A (1986) Functional characteristics of lumbar visceral afferent fibres from the urinary bladder and the urethra in the cat. Pfliigers Arch 407: 510 - 518

    Article  CAS  Google Scholar 

  6. Bahns E, Halsband U, Janig W (1985 a) Functional character¬istics of sacral afferent fibres from the urinary bladder, urethra, colon and the anus. Pfliigers Arch 405 Suppl: R51

    Google Scholar 

  7. Bahns E, Halsband U, Jänig W (1985 b) Reaction of visceral afferents in the pelvic nerve to distension and contraction of the urinary bladder in the cat. Neurosci Lett Suppl 22: S 86

    Google Scholar 

  8. Baker DG, Coleridge HM, Coleridge JCG, Nerdrum T (1980) Search for a cardiac nociceptor: stimulation by bradykinin of sympathetic afferent nerve endings in the heart of the cat. J Physiol (Lond) 306: 519 - 536

    CAS  Google Scholar 

  9. Baidissera F, Hultborn H, liiert M (1981) Integration in spinal neuronal systems. In: Handbook of physiology, section 1, The nervous system, vol II: Motor control, part I. American Physiological Society, Bethesda MD, pp 509 - 595

    Google Scholar 

  10. Baron R, Jänig W, McLachlan EM ( 1985 a) The afferent and sympathetic components of the lumbar spinal outflow to the colon and pelvic organs in the cat: I. The hypogastric nerve. J Comp Neurol 238: 135-146

    Article  PubMed  CAS  Google Scholar 

  11. Baron R, Jänig W, McLachlan EM ( 1985 b) The afferent and sympathetic components of the lumbar spinal outflow to the colon and pelvic organs in the cat: II. The lumbar splanchnic nerves. J Comp Neurol 238: 147-157

    Article  PubMed  CAS  Google Scholar 

  12. Barön R, Jänig W, McLachlan EM ( 1985 c) The afferent and sympathetic components of the lumbar spinal outflow to the colon and pelvic organs in the cat: III. The colonic nerves, incorporating an analysis of all components of the lumbar prevertebral outflow. J Comp Neurol 238: 158-168

    Article  PubMed  Google Scholar 

  13. Basbaum AI, Fields HL (1984) Endogenous pain control systems: brain stem spinal pathways and endorphin circuitry. Ann Rev Neurosci 7: 309 - 338

    Article  PubMed  CAS  Google Scholar 

  14. Blumberg H, Haupt P, Jänig W, Kohler W (1983) Encoding of visceral noxious stimuli in the discharge patterns of visceral afferent fibres from the colon. Pfliigers Arch 398: 33 - 40

    Article  CAS  Google Scholar 

  15. Bromage PR, Melzack R (1974) Phantom limbs and the body schema. Can Anaesth Soc 21: 267 - 274

    Article  CAS  Google Scholar 

  16. Brown AG (1981) Organization in the spinal cord. Springer, Berlin Heidelberg New York

    Google Scholar 

  17. Burgess PR, Jen Yu Wei, Clark FJ (1982) Signaling of kinesthetic information by peripheral sensory receptors. Ann Rev Neurosci 5: 171 - 187

    Article  PubMed  CAS  Google Scholar 

  18. Burgess PR, Perl ER (1973) Cutaneous mechanoreceptors and nociceptors. In: Iggo A (ed) Handbook of sensory physiology. Springer, Berlin Heidelberg New York, pp 29 - 78

    Google Scholar 

  19. Cervero F (1982) Afferent activity evoked by natural stimula¬tion of the biliary system in the ferret. Pain 13: 137 - 151

    Article  PubMed  CAS  Google Scholar 

  20. Cervero F (1983 a) Somatic and visceral inputs to the thoracic spinal cord of the cat: effects of noxious stimulation of the biliary system. J Physiol (Lond) 337: 51-67

    CAS  Google Scholar 

  21. Cervero F (1983 b) Supraspinal connections of neurones in the thoracic spinal cord of the cat: ascending projections and the effects of descending impulses. Brain Res 275: 251-261

    Article  PubMed  CAS  Google Scholar 

  22. Cervero F, Connell LA (1984) Distribution of somatic and visceral primary afferent fibres within the thoracic spinal cord of the cat. J Comp Neurol 230: 88 - 98

    Article  PubMed  CAS  Google Scholar 

  23. Cervero F, Iggo A, Ogawa H (1976) Nociceptor-driven dorsal horn neurones in the substantia gelatinosa Rolandi of the cat. Pain 2: 5 - 24

    Article  PubMed  CAS  Google Scholar 

  24. Cervero F, Iggo A, Molony V (1979) Ascending projections of nociceptor-driven lamina I neurones in the cat. Exp Brain Res 35: 135 - 149

    Article  PubMed  CAS  Google Scholar 

  25. Cervero F, Tattersall JEH (1986) Somatic and visceral sensory integration in the thoracic spinal cord. In: Cervero F, Morrison JFB (eds) Visceral sensation. Progress in Brain Res 67: 189 - 205

    Google Scholar 

  26. Christensen BN, Perl ER (1970) Spinal neurons specifically excited by noxious or thermal stimuli: marginal zone of the dorsal horn. J Neurophysiol 33: 293 - 307

    PubMed  CAS  Google Scholar 

  27. Coggeshall RE, Hong KAP, Langford LA, Schaible H-G, Schmidt RF (1983) Discharge characteristics of fine medial articular afferents at rest and during passive movements of inflamed knee joints. Brain Res 272: 185 - 188

    Article  PubMed  CAS  Google Scholar 

  28. Craig AD, Kniffki K-D (1985 a) Spinothalamic lumbosacral lamina I cells responsive to skin and muscle stimulation in the cat. J Physiol (Lond) 365: 197 - 221

    Google Scholar 

  29. Craig AD, Kniffki K-D ( 1985 b) Spino-thalamo-cortical mech¬anisms of nociception. In: Sharma KN, Usha Nayar (eds) Current trends in pain research and therapy: Vol 1 Basic mechanisms and clinical applications. Indian Society for Pain Research and Therapy, New Delhi, pp 65 - 77

    Google Scholar 

  30. Craig AD, Mense S (1983) The distribution of afferent fibres from the gastrocnemius-soleus muscle in the dorsal horn of the cat, as revealed by the transport of horseradish peroxidase. Neurosci Lett 41: 233 - 238

    Article  PubMed  CAS  Google Scholar 

  31. Foerster O (1927) Die Leitungsbahnen des Schmerzgefühls und die chirurgische Behandlung der Schmerzzustände. Urban und Schwarzenberg, Berl in Wien

    Google Scholar 

  32. Foreman RD, Blair RW, Ammons WS (1986) Neural mecha¬nisms of cardiac pain. In: Cervero F, Morrison JFB (eds) Visceral sensation. Progress in Brain Res 67: 227 - 243

    Google Scholar 

  33. Foreman RD, Schmidt RF, Willis WD (1977) Convergence of muscle and cutaneous input onto primate spinothalamic tract neurons. Brain Res 124: 555 - 560

    Article  PubMed  CAS  Google Scholar 

  34. Foreman RD, Kenshalo DR Jr, Schmidt RF, Willis WD (1979 a) Field potentials and excitation of primate spino¬thalamic neurones in response to volleys in muscle afferents. J Physiol (Lond) 286: 197 - 213

    Google Scholar 

  35. Foreman RD, Schmidt RF, Willis WD (1979 b) Effects of mechanical and chemical stimulation of fine muscle afferents upon primate spinothalamic tract cells. J Physiol (Lond) 286: 215 - 231

    Google Scholar 

  36. Goldscheider A (1920) Das Schmerzproblem. Springer, Berlin

    Google Scholar 

  37. Guttmann L (1976) Spinal cord injuries. Comprehensive management and research. Blackwell Scientific Publications, Oxford, 2nd ed

    Google Scholar 

  38. Hancock MB, Foreman RD, Willis WD (1975) Convergence of visceral and cutaneous input onto spinothalamic tract cells in the thoracic spinal cord of the cat. Exp Neurol 47: 240 - 248

    Article  PubMed  CAS  Google Scholar 

  39. Handwerker HO (1984) Experimentelle Schmerzanalyse beim Menschen. In: Zimmermann M, Handwerker HO (eds) Schmerz. Springer, Berlin Heidelberg New York Tokyo, pp 87- 123

    Google Scholar 

  40. Haupt P, Jänig W, Kohler W (1983) Response pattern of visceral afferent fibres, supplying colon, upon chemical and mechanical stimuli. Pflügers Arch 398: 41 - 47

    Article  PubMed  CAS  Google Scholar 

  41. Head H (1893) On disturbances of sensation with especial reference to the pain of visceral disease. Brain 16: 1 - 32

    Article  Google Scholar 

  42. Honda CN, Mense S, Perl ER (1983) Neurons in ventrobasal region of cat thalamus selectively responsive to noxious mech¬anical stimulation. J Neurophysiol 49: 662 - 673

    PubMed  CAS  Google Scholar 

  43. Jänig W (1985 a) Organization of the lumbar sympathetic outflow to skeletal muscle and skin of the cat hindlimb and tail. Rev Physiol Biochem Pharmacol 102: 119-213

    Google Scholar 

  44. Jänig W (1985 b) Systemic and specific autonomic reactions in pain: efferent, afferent and endocrine components. Eur J Anaesth 2: 319-346

    Google Scholar 

  45. Jänig W (1986) Spinal cord integration of visceral sensory systems and sympathetic nervous system reflexes. In: Cervero F, Morrison JFB (eds) Visceral sensation. Progress in Brain Res 67: 255 - 277

    Google Scholar 

  46. Jänig W, Morrison JFB (1986) Functional properties of spinal visceral afferents supplying abdominal and pelvic organs, with special emphasis on visceral nociception. In: Cervero F, Mor¬rison JFB (eds) Visceral sensation. Progress in Brain Res 67:87- 114

    Google Scholar 

  47. Kellgren JH (1938) Observations on referred pain arising from muscle. Clin Sei 3: 175 - 190

    Google Scholar 

  48. Kellgren JH (1939) On the distribution of pain arising from deep somatic structures of segmental pain areas. Clin Sci 4: 35 - 46

    Google Scholar 

  49. Kniffki K-D, Mizumura K (1983) Responses of neurons in VPL and VPL-VL region of the cat to algesic stimulation of muscle and tendon. J Neurophysiol 49: 649 - 661

    PubMed  CAS  Google Scholar 

  50. Kumazawa T, Perl ER (1978) Excitation of marginal and substantia gelatinosa neurons in the primate spinal cord: indications of their place in dorsal horn functional organization. J Comp Neurol 177: 417 - 434

    Article  PubMed  CAS  Google Scholar 

  51. Kumazawa T, Perl ER, Burgess PR, Whitehorn D (1975) Ascending projections from marginal zone (lamina I) neurons of the spinal dorsal horn. J Comp Neurol 162: 1 - 12

    Article  Google Scholar 

  52. Kuo DC, de Groat WC (1985) Primary afferent projections of the major splanchnic nerve to the spinal cord and gracile nucleus of the cat. J Comp Neurol 231: 421 - 434

    Article  PubMed  CAS  Google Scholar 

  53. Kuo DC, Nadelhaft I, Hisamitsu T, de Groat WC (1983) Segmental distribution and central projections of renal afferent fibers in the cat studied by transganglionic transport of horseradish peroxidase. J Comp Neurol 216: 162 - 174

    Article  PubMed  CAS  Google Scholar 

  54. Kuo DC, Oravitz JJ, de Groat WC (1984) Tracing of afferent and efferent pathways in the left inferior cardiac nerve of the cat using retrograde and transganglionic transport of horseradish peroxidase. Brain Res 321: 111 - 118

    Article  PubMed  CAS  Google Scholar 

  55. Langford LA, Schmidt RF (1983) Afferent and efferent axons in the medial and posterior articular nerves of the cat. Anat Ree 206: 71 - 78

    Article  CAS  Google Scholar 

  56. Le Bars D, Dickenson AH, Besson JM, Villanueva L (1986) Aspects of sensory processing through convergent neurons. In: Yaksh TL (ed) Spinal afferent processing. Plenum Press, New York London, pp 467 - 504

    Google Scholar 

  57. Lewis T (1942): Pain. The Macmillan Press Ltd, London Basingstoke

    Google Scholar 

  58. Lewis T, Kellgren JH (1939) Observations relating to referred pain, viscero-motor reflexes and other associated phenomena. Clin Sci 4: 47 - 71

    Google Scholar 

  59. Light AR, Perl ER (1979 a) Reexamination of the dorsal root projection to the spinal dorsal horn including observations on the differential termination of coarse and fine fibers. J Comp Neurol 186: 117 - 132

    Article  PubMed  CAS  Google Scholar 

  60. Light AR, Perl ER (1979 b) Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J Comp Neurol 186: 133 - 150

    Article  PubMed  CAS  Google Scholar 

  61. Light AR, Trevino DL, Perl ER (1979) Morphological features of functionally defined neurons in the marginal zone and substantia gelatinosa of the spinal dorsal horn. J Comp Neurol 186: 151 - 172

    Article  PubMed  CAS  Google Scholar 

  62. Lynn B (1984) The detection of injury and tissue damage. In: Wall PD, Melzack R (eds): Textbook of pain. Churchill, Livingstone Edinburgh London Melbourne New York, pp 19 - 33

    Google Scholar 

  63. Malliani A, Lombardi F (1982) Consideration of the funda¬mental mechanisms eliciting cardiac pain. Am Heart J 103: 575- 578

    Google Scholar 

  64. Matthews PBC (1977) Muscle afferents and kinaesthesia. Br Med Bull 33: 137 - 142

    PubMed  CAS  Google Scholar 

  65. Matthews PBC (1982) Where does Sherrington’s “muscle sense” originate? Muscle, joints, corollary discharges? Ann Rev Neurosci 5: 189 - 218

    Article  PubMed  CAS  Google Scholar 

  66. McCloskey DI (1978) Kinesthetic sensibility. Physiol Rev 58: 763 - 820

    PubMed  CAS  Google Scholar 

  67. McLachlan EM, Janig W (1983) The cell bodies of origin of sympathetic and sensory axons in some skin and muscle nerves of the cat hindlimb. J Comp Neurol 214: 115 - 130

    Article  PubMed  CAS  Google Scholar 

  68. McMahon SB, Wall PD (1983) A system of rat spinal cord lamina I cells projecting through the contralateral dorsolateral funiculus. J Comp Neurol 214: 217 - 223

    Article  PubMed  CAS  Google Scholar 

  69. Melzack R, Bromage PR (1973) Experimental phantom limbs. Exp Neurol 39: 261 - 269

    Article  PubMed  CAS  Google Scholar 

  70. Melzack R, Casey KL (1968) Sensory, motivational, and central control determinants of pain. In: Kenshalo DR (ed) The skin senses. Ch C Thomas, Springfield, 111, pp 423 - 439

    Google Scholar 

  71. Melzack R, Wall PD (1965) Pain mechanisms: a new theory. Science 150: 971 - 979

    Article  PubMed  CAS  Google Scholar 

  72. Mense S (1986) Slowly conducting afferent fibers from deep tissues: neurobiological properties and central nervous actions. In: Progress in sensory physiology, vol 6. Springer, Berlin Heidelberg New York Tokyo, pp 139 - 219

    Google Scholar 

  73. Mense S, Craig AD, Lehmann-Willenbrock E, Meyer H (1985) Neurobiology of small-diameter afferent fibers from deep tissues. In: Rowe M, Willis WD (eds) Development, organiza¬tion, and processing in somatosensory pathways. Neurology and neurobiology, vol 14. Alan R Liss, Inc, New York, pp 299- 308

    Google Scholar 

  74. Mense S, Meyer H (1985) Different types of slowly conducting afferent units in cat skeletal muscle and tendon. J Physiol (Lond) 363: 403 - 417

    CAS  Google Scholar 

  75. Mense S, Stahnke M (1983) Responses in muscle afferent fibres of slow conduction velocity to contractions and ischaemia in the cat. J Physiol (Lond) 342: 383 - 397

    CAS  Google Scholar 

  76. Milne RJ, Foreman RD, Giesler GJ, Willis WD (1981) Conver¬gence of cutaneous and pelvic visceral nociceptive inputs onto primate spinothalamic neurons. Pain 11: 163 - 183

    Article  PubMed  CAS  Google Scholar 

  77. Morgan Ch, Nadelhaft J, de Groat WC (1981) The distribution of visceral primary afferents from the pelvic nerve to Lissauer’s tract and spinal gray matter and its relationship to the sacral parasympathetic nucleus. J Comp Neurol 201: 415 - 440

    Article  PubMed  CAS  Google Scholar 

  78. Morrison JFB (1977) The afferent innervation of the gastroin¬testinal tract. In: Brooks FP, Evers PW (eds) Nerves and the gut. CB Slack, Thorofare, pp 297 - 326

    Google Scholar 

  79. Morrison JFB (1981) Sensory processing in spinal afferent pathways from the bladder. In: Grastyan E, Molnar P (eds) Sensory functions. Adv Physiol Sci, vol 16. Akademiai Kiado, Budapest; Pergamon Press, Oxford, pp 325 - 333

    Google Scholar 

  80. Nadelhaft J, Roppolo J, Morgan C, de Groat WC (1983) Parasympathetic preganglionic neurons and visceral primary afferents in monkey sacral spinal cord revealed following application of horseradish peroxidase to pelvic nerve. J Comp Neurol 216: 36 - 52

    Article  PubMed  CAS  Google Scholar 

  81. Nathan PW (1976) The gate-control theory of pain. A critical review. Brain 99: 123 - 158

    Article  PubMed  CAS  Google Scholar 

  82. Ochoa JL, Torebjork HE (1983) Sensations evoked by intra¬neural microstimulation of single mechanoreceptor units in¬nervating the human hand. J Physiol (Lond) 342: 633 - 654

    CAS  Google Scholar 

  83. Perl ER ( 1984 a) Characterization of nociceptors and their activation of neurons in the superficial dorsal horn: first steps for the sensation of pain. In: Kruger L, Liebeskind JC (eds) Advances in pain research and therapy, vol 6. Raven Press, New York, pp 23 - 52

    Google Scholar 

  84. Perl ER (1984b) Pain and nociception. In: Brookhart JM, Mountcastle VB (eds): Handbook of physiology: section 1. The nervous system, vol III, Darian-Smith I (ed): Sensory processes. American Physiological Society, Bethesda, MD, pp 915 - 975

    Google Scholar 

  85. Rexed B (1952) The cytoarchitectonic organization of the spinal cord in the cat. J Comp Neurol 96: 415-495

    Article  Google Scholar 

  86. Rexed B (1954) A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol 100: 297 - 379

    Article  PubMed  CAS  Google Scholar 

  87. Ruch TC (1979) Pathophysiology of pain. In: Ruch T, Patton HD (eds) Physiology and biophysics. WB Saunders Company Philadelphia, pp 272 - 342

    Google Scholar 

  88. Schady WJL, Torebjörk HE (1983) Projected and receptive fields: A comparison of projected areas of sensations evoked by intraneural stimulation of mechanoreceptive units, and their innervation territories. Acta Physiol Scand 119: 267-275

    Google Scholar 

  89. Schady WJL, Torebjörk HE, Ochoa JL (1983 a) Peripheral projections of nerve fibres in the human median nerve. Brain Res 277: 249 - 261

    Google Scholar 

  90. Schady WJL, Torebjörk HE, Ochoa JL (1983 b) Cerebral localisation function from the input of single mechanoreceptive units in man. Acta Physiol Scand 119: 277 - 285

    Google Scholar 

  91. Schaible HG, Schmidt RF (1983 a) Activation of groups III and IV sensory units in medial articular nerve by local mechanical stimulation of knee joint. J Neurophysiol 49: 35 - 44

    Google Scholar 

  92. Schaible HG, Schmidt RF (1983 b) Response of fine medial articular nerve afferents to passive movements of knee joint. J Neurophysiol 49: 1118 - 1126

    Google Scholar 

  93. Sinclair D (1981) Mechanisms of cutaneous sensation. Oxford University Press, Oxford, Swett JE, McMahon SB, Wall PD (1985) Long ascending projections to the midbrain from cells of lamina I and nucleus of the dorsolateral funiculus of the rat spinal cord. J Comp Neurol 238: 401 - 416

    Google Scholar 

  94. Torebjörk HE, Ochoa JL (1980) Specific sensations evoked by activity in single identified sensory units in man. Acta Physiol Scand 110: 445 - 447

    Article  PubMed  Google Scholar 

  95. Torebjörk HE, Schady W, Ochoa J (1984) Sensory correlates of somatic afferent fibre activation. Human Neurobiol 3: 15 - 20

    Google Scholar 

  96. Wall PD (1978) The gate control theory of pain mechanisms. A re-examination and re-statement. Brain 101: 1 - 18

    Article  PubMed  CAS  Google Scholar 

  97. Wall PD (1984) Mechanisms of acute and chronic pain. In: Kruger L, Liebeskind JC (eds) Advances in pain research and therapy, vol 6. Raven Press, New York, pp 95 - 104

    Google Scholar 

  98. Wall PD (1985) Pain and no pain. In: Coen CW (ed) Functions of the brain. Clarendon Press, Oxford, pp 44 - 66

    Google Scholar 

  99. Wall PD, Devor M (1982) Consequences of nerve damage in the spinal cord and in neighbouring intact peripheral nerves. In: Culp WJ, Ochoa J (eds) Abnormal nerves and muscles as impulse generators. Oxford University Press, New York, pp 588 - 603

    Google Scholar 

  100. Wall PD, Melzack R (eds) (1984) Textbook of pain. Churchill, Livingstone Edinburgh London Melbourne New York

    Google Scholar 

  101. Willis WD (1982) Control of nociceptive transmission in the spinal cord. In: Progress in sensory physiology, vol 3, Springer, Berlin Heidelberg New York, pp 1 - 159

    Google Scholar 

  102. Wallis WD (1982) Control of nociceptive transmission in the spinal cord. In: Progress in sensory [hysiology, vol 3, Springer, Berlin Heidelberg New York, pp 1-159

    Google Scholar 

  103. Willis WD (1985) The pain system. The neural basis of nociceptive transmission in the mammalian nervous system. Karger, Basel

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag

About this paper

Cite this paper

Jänig, W. (1987). Neuronal Mechanisms of Pain with Special Emphasis on Visceral and Deep Somatic Pain. In: Brihaye, J., Loew, F., Pia, H.W. (eds) Pain. Acta Neurochirurgica Supplementum, vol 38. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6975-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6975-9_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7457-9

  • Online ISBN: 978-3-7091-6975-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics