Skip to main content

Abstract

It has been the hope of the biochemist for more than half a century to study in vitro the biological, i. e. enzymatic synthesis of protein. Of course, the hope has not yet been realized; but the outlook is brighter, or at least, less dim now. Certain misconceptions have been recognized, and with the removal of these obstructions approaches to the core of the problem appear to have been opened. This advance was made possible by the new experimental tool of isotope-labeled tracers. In most in vitro chemical reactions the products are formed in large enough quantities to be measured. This is not the case in protein biosynthesis, first because the reaction is very slow compared with ordinary chemical reactions, and second because a relatively large amount of protein is needed as enzyme system to make the reaction go at all; and any small increase in protein that may occur has to be seen against the backgroand of the large amount of protein present initially. The latter difficulty is now being circumvented, to some extent, by the use of antibodies to precipitate small amounts of specific proteins formed, [Petters and Anfinsen (129, 130), Keston and Dreyfus (100)]. But even in these experiments it is possible that there has not been an increase in the mass of total protein, but only a transformation of one tissue protein into another.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdou, I. A. and H. Tarver: Plasma Protein. II. Relationship between Circulating and Tissue Protein. J. biol. Chemistry 190, 781 (1951).

    CAS  Google Scholar 

  2. Abrams, R., J. M. Goldingerand E. S. G. Barron: Synthesis of Protein and Other Cell Substances from Acetic Acid in Isolated Bone Marrow. Biochim. Biophys. Acta 5, 74 (1950)

    CAS  Google Scholar 

  3. Anfinsen, C. B.: Radioactive Crystalline Ribonuclease. J. biol. Chemistry 185, 827 (1950).

    CAS  Google Scholar 

  4. Anfinsen, C. B.: The Nature of Intermediates in Protein Synthesis. Science (New York) 114, 683 (1951).

    Google Scholar 

  5. Anfinsen, C: B., A. B.loff, A. B. Hastingsand A. K. Solomon: The In Vitra Turnover of Dicarboxylic Amino Acids in Liver Slice Proteins. J. biol. Chemistry 168, 771 (1947)

    CAS  Google Scholar 

  6. Anfinsen, C. B. and D. Steinberg: Studies on the Biosynthesis of Ovalbumin. J. biol. Chemistry 189, 739 (1951)

    CAS  Google Scholar 

  7. Angier, R. B., J. H. Boothe, B. L. Hutchings, J. H. Mowat. J. Semb, E. L. R. Stokstad, Y. Subbarow, C. W. Waller, D. B. Consijeich, M. J. Fahrenbach, M. E. Hultquist, E. Kuh, E. H. Northey, D. R. Seeger, J. P. Sickels and J. M. Smith, Jr.: The Structure and Synthesis of the Liver L. Casei Factor. Science (New York) 103, 667 (1946).

    CAS  Google Scholar 

  8. Barker, H. A.: Recent Investigations on the Formation and Utilization of Active Acetate. In: W. D. Mcelroy and B. Glass, A Symposium on Phosphorus Metabolism, pp. 240–241. Baltimore: John Hopkins Press. 1951.

    Google Scholar 

  9. Bergmann, M. and O. K. Behrens: On the Assymmetric Course of the Enzymatic Synthesis of Peptide Bonds. J. biol. Chemistry 124, 7 (1938).

    CAS  Google Scholar 

  10. Bergmann, M. and H. Fraenkel-Conrat: The Rôle of Specificity in the Enzymatic Synthesis of Proteins. Syntheses with Intracellular Enzymes. J. biol. Chemistry 119, 707 (1937).

    CAS  Google Scholar 

  11. Bergmann, M. and H. Fraenkel-Conrat: The Enzymatic Synthesis of Peptide Bonds. J. biol. Chemistry 124, 1 (1938).

    CAS  Google Scholar 

  12. Bergmann, M. and J. S. Fruton: Some Synthetic and Hydrolytic Experiments with Chymotrypsin. J. biol. Chemistry 124, 321 (1938)

    CAS  Google Scholar 

  13. Bergmann, M. and J. S. Fruton: The Significance of Coupled Reactions for the Enzymatic Hydrolysis and Synthesis of Proteins. Ann. Yew York Acad. Sci. 45, 409 (1944).

    CAS  Google Scholar 

  14. Brocu, K.: A Heat Stable Co-factor for Glutathione Synthesis. Federat. Proc. (Amer. Soc. ezp. Biol.) 80, 163 (1951).

    Google Scholar 

  15. Bodansky, O.: Introduction to Physiological Chemistry, p. 280. New York: J. Wiley and Sons. 1938.

    Google Scholar 

  16. Borsook, H.: Protein Turnover and Incorporation of Labeled AminQ Acids into Tissue Proteins In Vivo and In Vitro. Physiologic. Rev. 30, 206 (1950).

    CAS  Google Scholar 

  17. Borsook, H.: (unpublished).

    Google Scholar 

  18. Borsook, H., C. L. Deasy, A. J Haagen-Smit, G. Keighley and P. H. Lowy: The Incorporation of Labeled Lysine into the Proteins of Guinea Pig Liver Homogenate. J. biol. Chemistry 279, 689 (1949).

    Google Scholar 

  19. Borsook, H., C. L. Deasy, A. J Haagen-Smit, G. Keighley and P. H. Lowy: A Peptide Fraction in Liver. J. biol. Chemistry 179, 705 (1949).

    CAS  Google Scholar 

  20. Borsook, H., C. L. Deasy, A. J Haagen-Smit, G. Keighley and P. H. Lowy: Uptake of Labeled Amino Acids by Tissue Proteins In Vitro. Federat. Proc. (Amer. Soc. exp. Biol.) 8, 589 (1949)

    CAS  Google Scholar 

  21. Borsook, H., C. L. Deasy, A. J Haagen-Smit, G. Keighley and P. H. Lowy: The Uptake In Vitro of Cm-Labeled Glycine, L-Leucine, and L-Lysine by Different Components of Guinea Pig Liver Homogenate. J. biol. Chemistry 184, 529 (1950).

    CAS  Google Scholar 

  22. Borsook, H., C. L. Deasy, A. J Haagen-Smit, G. Keighley and P. H. Lowy: Metabolism of C14-Labeled Glycine, L-Histidine, L-Leucine and L-Lysine. J. biol. Chemistry 187, 839 (1950).

    CAS  Google Scholar 

  23. Borsook, H., C. L. Deasy, A. J Haagen-Smit, G. Keighley and P. H. Lowy: Incorporation In Vitro of Labeled Amino Acids into Bone Marrow Cell Proteins. J. biol. Chemistry, 86, 297 (1950).

    Google Scholar 

  24. Borsook, H., C. L. Deasy, A. J Haagen-Smit, G. Keighleyand P. H. Lowy: Incorporation In Vitro of Labeled Amino Acids into Rat Diaphragm Proteins. J. biol. Chemistry 186, 309 (1950).

    CAS  Google Scholar 

  25. Borsook, H., C. L. Deasy, A. J Haagen-Smit, G. Keighley and P. H. Lowy: Incorporation In Vitro of Labeled Amino Acids into Proteins of Rabbit Reticulocytes. J. biol. Chemistry 196, 669 (1952).

    CAS  Google Scholar 

  26. Borsook, H. and J. W. Dubnoff: The Biological Synthesis of Hippuric Acid In Vitro. J. biol. Chemistry 132, 307 (1940).

    CAS  Google Scholar 

  27. Borsook, H. and J. W. Dubnoff: Synthesis of Hippuric Acid in Liver Homogenate. J. biol. Chemistry 268, 397 (1947)

    Google Scholar 

  28. Borsook, H. and J. W. Dubnoff: (unpublished).

    Google Scholar 

  29. Borsook, H. and H. M. Huffman: Some Thermodynamical Considerations of Amino Acids, Peptides, and Related Substances. In Claschmidt, Chemistry of the Amino Acids and Proteins, p. 822. Springfield, III. — Baltimore. 1938.

    Google Scholar 

  30. Borsook, H. and G. L. Keighley: The Continuing Metabolism of Nitrogen in Animals. Proc. Roy. Soc. (London), Ser. B 118, 488 (1935).

    CAS  Google Scholar 

  31. Brachet, J.: Recherches sur la synthèse de l’acide thymonucléique pendant le développement de l’oeuf d’oursin. Arch. Biol. (Paris) 44, 519 (1933)

    CAS  Google Scholar 

  32. Brachet, J.: The Metabolism of Nucleic Acid during Embryonic Development. Cold Spring Harbor Symp. Quant. Biology 12, 18 (1947).

    Google Scholar 

  33. Brenner, M., H. R. Millerand R. W. Pfister: Eine neue enzymatische Peptidsynthese. Helv. chim. Acta 33, 568 (1950).

    CAS  Google Scholar 

  34. Brenner, M. and R. W. Pfister: Enzymatische Peptidsynthese. Isolierung von enzymatisch gebildetem L-Methionyl-L-methionin and L-Methionyl-Lmethionyl-L-methionin Helv. shim. Acta 34, 2085 (1951).

    CAS  Google Scholar 

  35. Brenner, M., E. Sailerand K. Rüfenacht: Enzymatische Peptidsynthese. Peptidbildung aus DL-Threonin-isopropyl-ester. Helv. chim. Acta 34, 2096 (1951)

    CAS  Google Scholar 

  36. Cannon, P. R., C. H. Steffee, L. J. Frazier, D. A. Rowleyand P. C. Stepto: The Influence of Time of Ingestion of Essential Amino Acids upon Utilization in Tissue-Synthesis. Federat. Proc. (Amer. Soc. exp. Biol.) 6, 390 (1947)

    CAS  Google Scholar 

  37. Casperrson, T. and K. Brandt: Nucleotidumsatz and Wachstum bei PreB- hefe. Protoplasma 35, 507 (1940/41).

    Google Scholar 

  38. Casperrson, T., H. Landström-Hydan and L. Aquilonius: CytOplasmanukleotide in eiweißproduzierenden Drüsenzellen. Chromosome 2, 111 (1941–1944).

    Google Scholar 

  39. Casperrson, T. and J. Schultz: Nucleic Acid Metabolism of the Chromosomes in Relation to Gene Reproduction. Nature (London) 142, 294 (1938).

    Google Scholar 

  40. Casperrson, T. and B. Thorell: Der endozellulare Eiweiß-and NukleinsäureStoffwechsel im embryonalen Gewebe. Chromosoma 2, 132 (1941–1944).

    Google Scholar 

  41. Chantrenne, H.: The Requirement for Coenzyme A in the Enzymatic Synthesis of Hippuric Acid. J. biol. Chemistry 189, 227 (1951).

    CAS  Google Scholar 

  42. Cohen, P. P. and R. W. Mcgilvery: The Formation of p-Aminohippuric Acid by Rat Liver Slices. J. biol. Chemistry 266, 26, (1946).

    Google Scholar 

  43. Cohen, P. P. and R. W. Mcgilvery: Peptide Bond Synthesis. II. The Formation of p-Amino-hippuric Acid by Liver Homogenates. J. biol. Chemistry 169, 119 (1947).

    CAS  Google Scholar 

  44. Cohen, P. P. and R. W. Mcgilvery: Peptide Bond Synthesis. III. On the Mechanism of p-Aminohippuric Acid Synthesis J. biol. Chemistry 171, 121 (1947).

    CAS  Google Scholar 

  45. Cohen, S. S.: The Synthesis of Bacterial Viruses in Infected Cells. Cold Spring Harbor Sympos. _quantitat. Biol. 12, 35 (1947).

    CAS  Google Scholar 

  46. Collier, H. B.: The Problem of Plastein Formation. I. The Formation of Plastein by Papain. Canad. J. Res. Sect. B 18, 255 (1940).

    Google Scholar 

  47. Collier, H. B.: The Chemical Changes Involved in Plastein Formation by Papain and by Pepsin. Canad. J. Res. Sect. B 28, 272 (1940).

    Google Scholar 

  48. Cotzias, G. C. and V. P. Dole: Metabolism of Amines. II. Mitochondria) Localization of Monoamine Oxidase. Proc, Soc. exp. Biol. Med. 78, 157 (1951).

    CAS  Google Scholar 

  49. Cross, R. J., J. V. Taggart, G. A. Covo and D. E. Green: Studies on the Cyclophorase System. VI. The Coupling of Oxidation and Phosphorylation. J. biol. Chemistry 177, 655 (1949)

    CAS  Google Scholar 

  50. Cunningham, L., A. C. Griffinand J. M. Luck: Effect of a Carcinogenic Azo Dye on Liver Cell Structure. Isolation of Nuclei and Cytoplasmic Granules. Cancer Res. 10, 194 (1950).

    CAS  Google Scholar 

  51. Dovinsos, J. N.: Some Factors Influencing the Nucleic Acid Content of Cells and Tissues. Cold Spring Harbor Sympos. quantitat. Biol. 12, 50 (1947).

    Google Scholar 

  52. Delwiche, C. C., W. D. Loomisand P. K. Stumpf: Amide Metabolism in Higher Plants. II. The Exchange of Isotopic Ammonia by Glutamyl Transferase. Arch. Biochemistry 33, 333 (1951).

    CAS  Google Scholar 

  53. Ecker, P. G. E.: The Ultracentrifuge Study of Plastein. J. gen. Physiol. 30, 399 (1946)

    Google Scholar 

  54. Elliott, D. F. and A. Neuberger: Irreversibility of the Deamination of Threonine in the Rabbit and Rat. Biochemic. J. 46, 207 (1950).

    CAS  Google Scholar 

  55. Elliott, W. H.: Adenosinetriphosphate in Glutamine Synthesis. Nature (London) 161, 728 (1948).

    Google Scholar 

  56. Elliott, W. H.: Adenosinetriphosphate in Glutamine Synthesis. Biochemic. J. 42, V (1948).

    CAS  Google Scholar 

  57. Folin, O.: A Theory of Protein Metabolism. Amer. J. Physiol. 73, 117 (1905).

    Google Scholar 

  58. Folin, O. and W. Denis: Protein Metabolism from the Standpoint of Blood and Tissue Analyses. J. biol. Chemistry 11, 87 (1912).

    CAS  Google Scholar 

  59. Folley, S. J.: Note on the Preparation and Fractionation of the a-Naphthylisocyanate Compoand of Plastein. Biochemic. J. 27, 151 (1933)

    CAS  Google Scholar 

  60. Forker, L. L., L L. Charkoff, C. Entenmanand H. Tarver: Formation of Muscle Protein in Diabetic Dogs, Studied with S38-Methionine. J. biol. Chemistry 188, 37 (1951)

    CAS  Google Scholar 

  61. Frantz. I. D., Jr. and R. B. Loatfield: Equilibrium and Exchange Reactions Involving Peptides, Amino Acids, and Proteolytic Enzymes. Federat. Proc. (Amer. Soc. exp. Biol.) 9, 172 (1950).

    Google Scholar 

  62. Eitanrj, I. D., Jr., R. B. Loftfieldand W. W. Miller. Incorporation of C’ from Carboxyl-Labeled DL-Alanine into the Proteins of Liver Slices. Science (New York) 106, 544, (1947).

    Google Scholar 

  63. Frantz, I. D., Jr., P. C. Zamecnik, J. W. Reeseand M. L. Stephenson: The Effect of Dinitrophenol on the Incorporation of Alanine Labeled with Radioactive Carbon into the Proteins of Slices of Normal and Malignant Rat Liver. J. biol. Chemistry 174, 773 (1948).

    CAS  Google Scholar 

  64. Friedberg, F.: The Action of Dehydrocorticosterone in the Regulation of Protein Turnover Studied with Ss5 Labeled Methionine. Euclides 109, 116 (1950).

    Google Scholar 

  65. Friedberg, F. and D. M. Greenberg: The Effect of Growth Hormone on the Incorporation of 585 of Methionine into Skeletal Muscle Protein of Normal and Hypophysectomized Animals. Arch. Biochemistry 17, 193 (1948).

    CAS  Google Scholar 

  66. Friedberg, F., M. P. Schulmanand D. M. Greenberg: The Effect of Growth on the Incorporation of Glycine Labeled with Radioactive Carbon into the Protein of Liver Homogenates. J. biol. Chemistry 173, 437 (1948).

    CAS  Google Scholar 

  67. Friedberg, F., H. Tarverand D. M. Greenberg: The Distribution Pattern of Sulfur-Labeled Methionine in the Protein and the Free Amino Acid Fraction of Tissues after Intravenous Administration. J. biol. Chemistry 173, 355 (1948).

    CAS  Google Scholar 

  68. Fruton, J. S.: Rôle of Proteolytic Enzymes in Biosynthesis of Peptide Bonds. Yale J. Biol. Med. 22, 263 (1950).

    CAS  Google Scholar 

  69. Geiger, E.: Experiments with Delayed Supplementation of Incomplete Amino Acid Mixtures. J. Nutrit. 34, 97 (1947).

    CAS  Google Scholar 

  70. Geiger, E.: The Rôle of the Time Factor in Feeding Supplementary Proteins. J. Nutrit. 36, 813 (1948).

    CAS  Google Scholar 

  71. Geiger, E.: The Importance of the Time Element in Feeding of Growing Rats: Experiments with Delayed Supplementation of Protein. Science (New York) 108, 42 (1948).

    CAS  Google Scholar 

  72. Geiger, E.: The Rôle of the Time Factor in Protein Synthesis. Science (New York) 111, 594 (1950).

    CAS  Google Scholar 

  73. Geiger, E.: Extra Caloric Function of Dietary Components in Relation to Protein Utilization. Federat. Proc. (Amer. Soc. exp. Biol.) 10, 670 (1951).

    CAS  Google Scholar 

  74. Geiger, E., E. B. Hagertyand H. D. Gatchell: Transformation of Tryptophan to Nicotinic Acid Investigated with Delayed Supplementation of Tryptophan Arch. Biochemistry 23, 315 (1949).

    CAS  Google Scholar 

  75. Greenberg, D. M., F. Friedberg, M. P. Schulmanand T. Winnick: Studies on the Mechanism of Protein Synthesis with Radioactive Carbon-Labeled Compoands Cold Spring Harbor Sympos. quantitat. Biol. 13, 113 (1948).

    CAS  Google Scholar 

  76. Greenberg, D. M. and T. Winnick: Studies in Protein Metabolism with Compoands Labeled with Radioactive Carbon. II. The Metabolism of Glycine in the Rat. J. biol. Chemistry 173, 199 (1948).

    CAS  Google Scholar 

  77. Greene, C. H.: Changes in Nitrogenous Extractives in the Muscular Tissue of the King Salmon During the Fast of Spawning Migration. J. biol. Chemistry 39, 457 (1919).

    CAS  Google Scholar 

  78. Griffin, A. C., S. Bloom, L. Cunningham, J. D. Teresiand J. M. Luck: The Uptake of Labeled Glycine by Normal and Cancerous Tissues in the Rat. Cancer 3, 316 (1950).

    CAS  Google Scholar 

  79. Grossowicz, N., E. Wainfan, E. Borekand H. Waelsch: The Enzymatic Formation of Hydroxamic Acids from Glutamine and Asparagine. J. biol. Chemistry 187, 111 (1950).

    CAS  Google Scholar 

  80. Hanes, C. S., F. J. R. Hirdand F. A. Isherwood: Synthesis of Peptides in Enzymatic Reactions Involving Glutathione. Nature (London) 166, 288 (1950).

    CAS  Google Scholar 

  81. Harte, R. A., J. J. Traversand P. Sarich: The Effect on Rat Growth of Alternated Protein Intakes. J. Nutrit. 35, 287 (1948).

    CAS  Google Scholar 

  82. Haugaard, G. and R. M. Roberts: Heats of Organic Reactions. XIV. The Digestion of ß-Lactoglobulin by Pepsin. J. Amer. chem. Soc. 64, 2664 (1942).

    CAS  Google Scholar 

  83. Henderson, R. and R. S. Harris: Concurrent Feeding of Amino Acids. Federat. Proc. (Amer. Soc. exp. Biol.) 8, 385 (1949)

    Google Scholar 

  84. Herbst, R. M. and D. Shemin: The Synthesis of Peptides by Transamination. J. biol. Chemistry 147, 541 (1943)

    CAS  Google Scholar 

  85. Hitchcock, D.: Amphoteric Properties of Amino Acids and Proteins. In: C. L. A. Schmidt, Chemistry of the Amino Acids and Proteins, p. 596. Springfield, III. — Baltimore. 1938.

    Google Scholar 

  86. Hoberman, H. D.: Measurement of Rates of Protein Degradation and Protein Loss in Fasting Animals. J. biol. Chemistry 188, 797 (1951).

    CAS  Google Scholar 

  87. Hogeboom, G. H.: Separation and Properties of Cell Components. Federat. Proc. (Amer. Soc. exp. Biol.) 10, 640 (1951)

    CAS  Google Scholar 

  88. Hogeboom, G. H. and W. C. Schneider: Cytochemical Studies of Mammalian Tissues. III. Isocitric Dehydrogenase and Triphosphopyridine Nucleotide-Cytochrome C Reductase of Mouse Liver. J. biol. Chemistry 186, 417 (1950).

    CAS  Google Scholar 

  89. Holloway, B. J. and S. H. Ripley: Nucleic Acid Content of Reticulocytes and its Relation to Uptake of Radioactive Leucine In Vitro. J. biol. Chemistry 196. 695, (1952).

    CAS  Google Scholar 

  90. >Hydén, H.: Protein Metabolism in the Nerve Cell and Reproduction. Acta physiol. Scand. 6, Suppl. 17, 1 (1943).

    Google Scholar 

  91. Hydén, H.: The Nucleoproteins in Virus Reproduction. Cold Spring Harbor Sympos. quantitat. Biol. 12, 104 (1947).

    Google Scholar 

  92. Johnston, R. B. and K. Bloch: Enzymatic Synthesis of Glutathione. J biol. Chemistry 188, 221 (1951).

    CAS  Google Scholar 

  93. Johnston, R. B., M. J. Mycekand J. S. Fruton: Catalysis of Transamidation Reactions by Proteolytic Enzymes. J. biol. Chemistry 185, 629 (1950).

    CAS  Google Scholar 

  94. Johnston, R. B., M. J. Mycekand J. S. Fruton: Catalysis of Transamidation Reactions by Chymotrypsin. J. biol. Chemistry 182, 205 (1950).

    Google Scholar 

  95. Kaufman, S. and H. Neurath: Inhibition of Chymotrypsin by Structural Analogs of Specific Substrates. Arch. Biochemistry 21, 245 (1940)

    Google Scholar 

  96. Kaufman, S. and H. Neurath: Structural Requirements of Specific Substrates for Chymotrypsin. II. An Analysis of the Contribution of the Structural Components to Enzymatic Hydrolysis. Arch. Biochemistry 21, 437 (1949)

    CAS  Google Scholar 

  97. Kaufman, S., H. Neurathand G. W. Schwert: The Specific Peptidase and Esterase Activities of Chymotrypsin. J. biol. Chemistry 177, 793 (1949)

    CAS  Google Scholar 

  98. Keller, E. B.: Turnover of Proteins of Cell Fractions of Adult Rat Liver In Vivo. Federat. Proc. (Amer. Soc. exp. Biol.) 10, 206 (1951).

    Google Scholar 

  99. Kemen, A. J., S. W. Hunter, G. E. Mooreand C. R. Hitchcock: Distribution of Tracer Doses of Methionine Tagged with Radiosulfur in Normal and Neo-plastic Tissue. Cancer Res. 9, 174 (1949).

    Google Scholar 

  100. Feston, A. and J.-C. Dreyfus: Tracer Studies in Protein Synthesis: Antibody Formation by Spleen Slices. Federat. Proc. (Amer. Soc. exp. Biol.) 10, 206 (1951).

    Google Scholar 

  101. Kielley, R. K. and W. C. Schneider: Synthesis of p-Aminohippuric Acid by Mitochondria of Mouse Liver Homogenates. J. biol. Chemistry 185, 869 (1950)

    CAS  Google Scholar 

  102. Kochakian, C. D.: The Protein Anabolic Effects of Steroid Hormones. Vitamins and Hormones 4, 255 (1946).

    Google Scholar 

  103. Kochakian, C. D.: The Effect of Dose and Nutritive State on the Renotrophic and Androgenic Activities of Various Steroids. Amer. J. Physiol. 145, 549 (1946).

    CAS  Google Scholar 

  104. Kochakian, C. D.: Comparison of Protein Anabolic Property of Various Androgens in the Castrated Rat. Amer. J. Physiol. 160, 83 (1950).

    Google Scholar 

  105. Kochakian, C. D.: Comparison of Protein Anabolic Properties of Testosterone Propionate and Growth Hormone in the Rat. Amer. J. Physiol. 160, 66 (1950)

    CAS  Google Scholar 

  106. Kochakian, C. D. and B. Beall: Comparison of the Protein Anabolic Property of Testosterone Propionate in the Male and Female Rat. Amer. J. Physiol. 160, 62 (1950).

    CAS  Google Scholar 

  107. Kochakian, C. D., J. H. Hammand M. N. Bartlett: Effect of Steroids on the Body Weight, Temporal Muscle and Organs of the Guinea Pig. Amer. J. Physiol. 155, 242 (1948).

    CAS  Google Scholar 

  108. Kochakian, C. D., J. G. Moeand J. Dolphin: Protein Anabolic Property of Testosterone Propionate in Adrenalectomized and Normal Rats. Amer. J. Physiol. 162, 581 (1950).

    CAS  Google Scholar 

  109. Le Page, G. A. and C. Heidelberger: Incorporation of Glycine-2-C“ into Proteins and Nucleic Acids of Normal and Neoplastic Rat Tissues. Federat. Proc. (Amer. Soc. exp. Biol.) 9, 195 (1950).

    Google Scholar 

  110. Le Page, G. A. and C. Heidelberger: Incorporation of Glycine-2-C14 into the Proteins and Nucleic Acids of the Rat. J. biol. Chemistry 188, 593 (1951).

    Google Scholar 

  111. Levine, M. and H. Tarver: On the Synthesis and some Applications of Serine-ß-C14. J. biol. Chemistry 184, 427 (1950).

    CAS  Google Scholar 

  112. Levine, M. and H. Tarver: Studies on Ethionine. III. Incorporation of Ethionine into Rat Proteins. J. biol. Chemistry 192, 835 (1951).

    CAS  Google Scholar 

  113. Li, C. H. and H. M. Evans: The Properties of the Growth and Adrenocorticotrophic Hormones. Vitamins and Hormones 5, 197 (1947)

    CAS  Google Scholar 

  114. Lipmann, F.: MetabolicGeneration and Utilization of Phosphate Bond Energy. Adv. Enzymology 1, 99 (1941).

    CAS  Google Scholar 

  115. Lipmann, F.: Mechanism of Peptide Bond Formation. Federat. Proc. (Amer. Soc. exp. Biol.) 8, 597 (1949).

    CAS  Google Scholar 

  116. Litwack, G., J. N. Williams, Jr., F. Feigelsonand C. A. Elvehjem: Xanthine Oxidase and Liver Nitrogen Variation with Dietary Protein. J. biol. Chemistry 187, 605 (1950).

    CAS  Google Scholar 

  117. Loomis, W. F. and F. Lipmann: Reversible Inhibition of the Coupling between Phosphorylation and Oxidation. J. biol. Chemistry 173, 807 (1948).

    CAS  Google Scholar 

  118. Lotspeich, W. D.: Relations between Insulin and Pituitary Hormones in Amino Acid Metabolism. J. biol. Chemistry 185, 221 (1950).

    CAS  Google Scholar 

  119. Martin, C. J. and R. Robison: The Minimum Nitrogen Expenditure of Man and the Biological Value of Various Proteins for Human Nutrition. Biochemic. J. 16, 407 (1922).

    CAS  Google Scholar 

  120. Mcgilvery, R. W. and P. P. Cohen: Enzymatic Synthesis of Ornithuric Acids. J. biol. Chemistry 183, 179 (1950).

    CAS  Google Scholar 

  121. Melchior, J. B., O. Kliozeand I. M. Klotz: Further Studies of the Synthesis of Protein by Escherichia Coli. J. biol. Chemistry 189, 411 (1951).

    CAS  Google Scholar 

  122. Melchior, J. B., M. Mellodyand I. M. Klotz: The Synthesis of Protein by Non-proliferating Escherichia Coli. J. biol. Chemistry 174, 81 (1948).

    CAS  Google Scholar 

  123. Melchior, J. B. and H. Tarver: Studies in Protein Synthesis In Vitro. I. On the Synthesis of Labeled Cystine (Su) and its Attempted Use as a Tool in the Study of Protein Synthesis. Arch. Biochemistry 12, 301 (1947).

    CAS  Google Scholar 

  124. Melchior, J. B. and H. Tarver: Studies on Protein Synthesis In Vitro. II. On the Uptake of Labeled Sulfur by the Proteins of Liver Slices Incubated with Labeled Methionine (S25). Arch. Biochemistry 12. 309 (1947)

    CAS  Google Scholar 

  125. Miller, L. L.: Changes in Rat Liver Enzyme Activity with Acute Inanition. Relation of Loss of Enzyme Activity to Liver Protein Loss. J. biol. Chemistry 172, 113 (1948).

    CAS  Google Scholar 

  126. Miller, L. L.: The Loss and Regeneration of Rat Liver Enzymes Related to Diet Protein. J. biol. Chemistry 186, 253 (1950).

    CAS  Google Scholar 

  127. Muntwyler, E., S. Seifterand D. M. Harkness: Some Effects of Restriction of Dietary Protein on the Intracellular Components of Liver. J. biol. Chemistry 184, 181 (1950).

    CAS  Google Scholar 

  128. Northrop, J.: Plastein Formation from Pepsin,and Trypsin. J. gen. Physiol. 30, 377 (1946)

    Google Scholar 

  129. Peters, T., Jr. and C. B. Anfinsen: The Production of Radioactive Serum Albumin by Liver Slices. J. biol. Chemistry 182, 171 (1950).

    CAS  Google Scholar 

  130. Peters, T., Jr. and C. B. Anfinsen: Net Production of Serum Albumin by Liver Slices. J. biol. Chemistry 286, 805 (1950).

    Google Scholar 

  131. Peterson, E. A., D. M. Greenbergand T. Winnick: Characteristics of the Amino Acid Incorporation System of Liver Homogenates. Federat. Proc. (Amer. Soc. exp. Biol.) 9, 214 (1950).

    Google Scholar 

  132. Porter, R. R. and F. Sanger: The Free Amino Groups of Haemoglobin. Biochemic. J. 42, 287 (1948)

    Google Scholar 

  133. Potter, V. R.,, R. O. Recknageland R. B. Hurlbert: Intracellular Enzyme Distribution; Interpretations and Significance. Federat. Proc. (Amer. Soc. exp. Biol.) 10, 646 (1951).

    CAS  Google Scholar 

  134. Price, J. M., E. C. Millerand J. A. Miller, The Intracellular Distribution of Protein, Nucleic Acids, Riboflavin and Protein-Boand Aminoazo Dye in the Livers of Rats Fed p-Dimethyl-aminoazobenzene. J. biol. Chemistry 173, 345 (1948)

    CAS  Google Scholar 

  135. Price, J. M., E. C. Miller, J A Millerand G. M. Weber: Studies On the Intracellular Composition of Livers from Rats Fed Various Aminoazo Dyes. I. 4-Aminoazobenzene, 4-Dimethylaminoazobenzene, 4’-Methyl and 3’-Methyl4-Dimethylaminoazobenzene. Cancer Res. 9, 398 (1949)

    CAS  Google Scholar 

  136. Price, J. M., E. C. Miller, J A Millerand G. M. Weber: Studies on the Intracellular Composition of Livers from Rats, Fed Various Aminoazo Dyes. II. 3’-Methyl-2’-Methyl-, and 2-Methyl-4-Dimethylaminoazobenzene, 3-Methyl-4-Monomethylaminoazobenzene, and 4’-Fluoro-4-Dimethylaminoazobenzene. Cancer Res. 10, 18 (1950).

    CAS  Google Scholar 

  137. Price, J. -M., J. A. Miller, E. C. Millerand G. M. Weber: Studies on the Intracellular Composition of Liver and Liver Tumor from Rats Fed 4-Dimethylaminoazo-benzene. Cancer Res. 9, 96 (1949)

    CAS  Google Scholar 

  138. Ratner, S., M. Blanchard, A. F. Coburnand D. E. Green: Isolation of a Peptide of p-Aminobenzoic Acid from Yeast. J. biol. Chemistry 155, 689 (1944)

    CAS  Google Scholar 

  139. Reid, J. C. and H. B. Jones: Radioactivity Distribution in the Tissues of Mice Bearing Melanosarcoma after Administration of DL-Tyrosine Labeled with Radioactive Carbon. J. biol. Chemistry 174, 427 (1948).

    CAS  Google Scholar 

  140. Reifenstein, E. C., F. Allbright, Jr. and S. L. Wells: Accumulation, Interpretation, and Presentation of Data Pertaining to Metabolic Balances, Notably Those of Calcium, Phosphorus, and Nitrogen. J. clin. Endocrin. 5, 367 (1945); Correction, ibid. 6, 232 (1946).

    Google Scholar 

  141. Rittenberg, D., R. Schoenheimer and A. S. Keston: Studies in Protein-Metabolism. IX. The Utilization of Ammonia by Normal Rats on a Stock Diet. J. biol. Chemistry 128, 603 (1939).

    CAS  Google Scholar 

  142. Rittenberg, D. and D. Shemin: The Metabolism of Proteins and Amino Acids. Annu. Rev. Biochem. 15, 247 (1946).

    CAS  Google Scholar 

  143. Rutman, R., E. Dempsterand H. Tarver: Genetic Differences in Methionine Uptake by Surviving Tissues. J. biol. Chemistry 177, 491 (1949)

    CAS  Google Scholar 

  144. Salter, W. T. and O. H. Pearson: The Enzymatic Synthesis from Thyroid Diiodotyrosine Peptone of an Artificial Protein which Relieves Myxedema. J. biol. Chemistry 112, 579 (1935/36).

    Google Scholar 

  145. Sanadi, D. R. and D. M. Greenberg: Effect of Amino Acid Deficiencies on Incorporation of Radioactive-Carbon Labeled Amino Acids into Animal Proteins. Proc. Soc. exp. Biol. Med. 69, 162 (1948).

    CAS  Google Scholar 

  146. Sarkar, N., M. Fuldand D. E. Green: Studies on the Synthesis of Hippuric Acid. Federat. Proc. (Amer. Soc. exp. Biol.) 10, 242 (1951).

    Google Scholar 

  147. Schaeffer, A. J. and E. Geiger: Cataract Development in Animals with Delayed Supplementation of Tryptophane. Proc. Soc. exp. Biol. Med. 66, 309 (1947)

    CAS  Google Scholar 

  148. Schneider, W. C.: NucleicAcids in Normal and Neoplastic Tissues. Cold Spring Harbor Sympos. quantitat. Biol. 12, 169 (1947).

    CAS  Google Scholar 

  149. Schoenheimer, R.: The Dynamic State of Body Constituents. Cambridge, Mass.: Harvard Univ. Press. 1942.

    Google Scholar 

  150. Schoenheimer, R., S. Ratnerand D. Rittenberg: Studies in Protein Metabolism. VII. The Metabolism of Tyrosine. J. biol. Chemistry 127, 333 (1939).

    Google Scholar 

  151. Schoenheimer, R., S. Ratnerand D. Rittenberg: Studies on Protein Metabolism. X. The Metabolic Activity of Body Proteins Investigated with L(-) Leucine Containing Two Isotopes. J. burl. Chemistry 130, 703 (1939)

    CAS  Google Scholar 

  152. Schoenheimer, R., S. Rather, D. Rittenbergand M. Heidelberger: The Interaction of Blood Proteins of the Rat with Dietary Nitrogen. J. biol. Chemistry 144, 541 (1942).

    CAS  Google Scholar 

  153. Schou, M., N. Grossowicz, A. Lajthaand H. Waeish: Enzymatic Formation of Glutamo-Hydroxamic Acid from Glutamine in Mammalian Tissue, Nature (London) 167, 818 (1951).

    CAS  Google Scholar 

  154. Schwert, R. S.: (unpublished).

    Google Scholar 

  155. Schweigert, B. S., B. T. Guthneck, J. M. Price, J. A. Millerand E. C. MillerAmino Acid Composition of Morphological Fractions of Rat Livers and Induced Liver Tumors. Proc. Soc. exp. Biol. Med. 72, 495 (1949)

    CAS  Google Scholar 

  156. Schweigert, B. S., H. E. Sauberlich, C. A. Elvehjemand C. A. Baumann: Free Tryptophane in Blood and Urine. J. biol. Chemistry 164, 213 (1946).

    CAS  Google Scholar 

  157. Schwert, G. W., H. Neurath, S. Kaufmanand J. E. Snobe: The Specific Esterase Activity of Trypsin. J. biol. Chemistry 172, 221 (1948).

    CAS  Google Scholar 

  158. Seifter, S., E. Muntwylerand. D. M. Harkness: Some Effects of Continued Protein Deprivation, with and without Methionine Supplementation, on Intracellular Liver Components. Proc. Soc. exp. Biol. Med. 75, 46 (1950).

    CAS  Google Scholar 

  159. Shemin, D., J. M. Londonand D. Rittenberg: The Synthesis of Protoporphyrin In Vitro by Red Blood Cells of the Duck. J. biol. Chemistry 183, 757 (1950)

    CAS  Google Scholar 

  160. Shemin, D. and D. Rittenberg: Some Interrelationships in General Nitrogen Metabolism. J. biol. Chemistry 153, 401 (1944)

    CAS  Google Scholar 

  161. Siesevitz, P. and P. C. Zamecnik: In Vitro Incorporation of x-C“-DL-Alanine into Protein of Rat-Liver Granular Fractions Federat. Proc. (Amer Soc. exp.Biol.) 10, 246 (1951).

    Google Scholar 

  162. Simmonds, S., E. L. Tatumand J. S. Fruton: The Utilization of Phenyl-alanine and Tyrosine Derivatives by Mutant Strains of Escherichia Coli. J. biol. Chemistry 169, 91 (1947).

    CAS  Google Scholar 

  163. Simpson, M. V., E. Farberand H. Tarver: Studies on Ethionine: Inhibition of Protein Synthesis in Intact Animals J biol. Chemistry 182, 81 (1950).

    CAS  Google Scholar 

  164. Smith, E. L.: Catalytic Action of Metal Peptidases. Federat. Proc. (Amer. Soc. exp. Biol.) 8, 581 (1949).

    CAS  Google Scholar 

  165. Snore, J. E. and H. Neurath: Structural Requirements of Specific Substrates for Chymotrypsin. I. The Contribution of the Secondary Peptide Group. Arch. Biochemistry 21, 351 (1949)

    Google Scholar 

  166. Snoke, J. E. and F. Rothman: Glutathione Synthesis from Glutamyl Cysteine and Glycine. Federat. Proc. (Amer. Soc. exp. Biol.) 10, 249 (1951).

    Google Scholar 

  167. Speck, J. F.: The Enzymatic Synthesis of Glutamine. J. biol. Chemistry 168, 403 (1947)

    CAS  Google Scholar 

  168. Speck, J. F.: The Synthesis of Glutamine in Pigeon Liver Dispersions. J. biol. Chemistry 179, 1387 (1949)

    CAS  Google Scholar 

  169. Speck, J. F.: The Enzymatic Synthesis of Glutamine; A Reaction Using Adenosine Triphosphate. J. biol. Chemistry 179, 1405 (1949).

    CAS  Google Scholar 

  170. Spector, H. and H. H. Mitchell: Paired Feeding in the Study of the Counteraction by Nicotinic Acid and Tryptophane of the Growth-Depressing Effect of Corn in Rats. J. biol. Chemistry 165, 37 (1946).

    CAS  Google Scholar 

  171. Spiegelman, S. and M. D. Kamen: Genes and Nucleoproteins in the Synthesis of Enzymes. Science (New York) 104, 581 (1946).

    CAS  Google Scholar 

  172. Spiegelman, S. and M. D. Kamen: Some Basic Problems in the Relation of Nucleic Acid Turnover in Protein Synthesis. Cold Spring Harbor Sympos. quantitat. Biol. 12, 211 (1947)

    CAS  Google Scholar 

  173. Sprinson, D. B. and D. Rittenberg: The Rate of Utilization of Ammonia for Protein Synthesis. J. biol. Chemistry 180, 707 (1949).

    CAS  Google Scholar 

  174. Sprinson, D. B. and D. Rittenberg: The Rate of Interaction of the Amino Acids of the Diet with the Tissue Proteins. J. biol. Chemistry 180, 715 (1949).

    CAS  Google Scholar 

  175. Stumpf, P. K. and W. D. Loomis: Observations on a Plant Amide Enzyme System Requiring Manganese and Phosphate. Arch. Biochemistry 25, 451 (1950).

    CAS  Google Scholar 

  176. Stumpf, P. K., W. D. Loomisand C. Michelson, Amide Metabolism in Higher Plants. I. Preparation and Properties of Glutamyl Transferase from Pumpkin Seedling. Arch. Biochemistry 30, 126 (1951).

    CAS  Google Scholar 

  177. Tarver, H. and W. O. Reinhardt: Methionine Labeled with Radioactive Sulfur as an Indicator of Protein Formation in the Hepatectomized Dog. J. biol. Chemistry 167, 395 (1947)

    CAS  Google Scholar 

  178. Tarver, H. and C. L. A. Schmidt: Radioactive Sulfur Studies. I. Synthesis of Methionine. II. Conversion of Methionine Sulfur to Taurine Sulfur in Dogs and Rats. III. Distribution of Sulfur in the Proteins of Animals Fed Sulfur or Methionine. IV. Experiments In Vitro with Sulfur and Hydrogen Sulfide. J. biol. Chemistry 146, 69 (1942).

    CAS  Google Scholar 

  179. Tauber, H. T.: Protein Synthesis by Chymotrypsin. J. Amer. chem. Soc 71, 2952 (1949)

    CAS  Google Scholar 

  180. Tauber, H. T.: Synthesis of High Molecular-Weight Protein-Like Substances by Chymotrypsin. Federat. Proc. (Amer. Soc. exp. Biol.) 9, 237 (1950).

    Google Scholar 

  181. Tauber, H. T.: Synthesis of Protein-Like Substances by Chymotrypsin. J. Amer. chem. Soc. 73, 1288 (1951).

    CAS  Google Scholar 

  182. Tauber, H. T.: Synthesis of Protein-Like Substances by Chymotrypsin from Dilute Peptic Digests and their Electrophoretic Patterns. J. Amer. chem. Soc. 73, 4965 (1951).

    CAS  Google Scholar 

  183. Thorell, B.: The Relation of Nucleic Acids to the Formation and Differentiation of Cellular Proteins. Cold Spring Harbor Sympos. quantitat. Biol. 12, 247 (1947)

    Google Scholar 

  184. Totter, J. R., B. Kelley, P. L. Dayand R. R. Edwards: The Metabolism of Glycine by Folic Acid-Deficient Chick Liver Homogenates. J. biol. Chemistry 186, 145 (1950).

    CAS  Google Scholar 

  185. Tyner, E. P., C. Heidelbergerand G. A. Le Page: Rates and Synthesis and Turnover of Proteins and Nucleic Acid Purines in the Rat. Federat. Proc. (Amer. Soc. exp. Biol.) 10, 262 (1951).

    Google Scholar 

  186. Van Slyke, D. D. and G. M. Meyer: The Effects of Feeding and Fasting on the Amino Acid Content of the Tissues J. biol. Chemistry 16, 231 (1913).

    Google Scholar 

  187. Vendrely, C., R. Vendrely: L’acide ribonucléique des mitochondries et des microsomes du foie et ses variations au cours du jeûne protéique. C. R. hebd. Séances Acad. Sci. 230, 333 (1950).

    CAS  Google Scholar 

  188. Vierordt, H.: Anatomische, physiologische and physikalische Daten and Tabellen. Jena. 1906.

    Google Scholar 

  189. Virtanen, A. I. and H. K. Kerkkonen: On the Chemical Nature of Plasteins. Acta chem. Scand. 5, 140 (1947).

    Google Scholar 

  190. Virtanen, A. I. and H. K. Kerkkonen: Structure of Plasteins. Nature (London) 161, 888 (1948).

    CAS  Google Scholar 

  191. Virtanen, A. I., H. K. Kerkkonen, M. Hakalaand T. Laaksonen: Die Synthese von Polypeptiden durch die Wirkung von Pepsin. Naturwiss. 37. 139 (1950).

    CAS  Google Scholar 

  192. Virtanen, A. I., H. K. Kerkkonen, T. Laaksonenand M. Hakala: Plastein, a Mixture of Higher-Molecular Polypeptides Synthesized by Proteolytic Enzymes. Acta chem. Scand. 3, 520 (1949).

    CAS  Google Scholar 

  193. Waelsch, H.: Glutamotransferase Activity in Mammalian Tissue Extracts. Federat. Proc. (Amer. Soc. exp. Biol.) 10, 266 (1951).

    Google Scholar 

  194. Waelsch, H.: Glutamic Acid and Cerebral Function. Adv. Protein Chem. 6, 299 (1951).

    CAS  Google Scholar 

  195. Waelsch, H., E. Borek, N. Grossowiczand M. Scxou: Glutamo-and AspartoTransferases. Federat. Proc. (Amer. Soc. exp. Biol.) 9, 242 (1950).

    Google Scholar 

  196. Waelsch, H., P. Owades, E. Borek, N. Grossowiczand M. Scxou: The Enzyme-Catalyzed Exchange of Ammonia with the Amide Group of Glutamine and Asparagine. Arch. Biochemistry 27, 237 (1950).

    CAS  Google Scholar 

  197. Waelsch, H. and D. Rittenberg: Glutathione. II. The Metabolism of Glutathione Studied with Isotopic Ammonia and Glutamic Acid. J. biol. Chemistry 144, 53 (1942).

    CAS  Google Scholar 

  198. Waldschmidt-Leitz, E. and K. Kühn: Über die enzymatische Synthese von Peptidbindungen. Hoppe-Seyler’s Z. physiol. Chem. 285, 22 (1950).

    Google Scholar 

  199. Wasteneys, H. and H. Boasook: The Enzymatic Synthesis of Protein. Physiologic. Rev. 10, 110 (1930).

    Google Scholar 

  200. Weissman, N. and R. Schoenheimer: The Relative Stability of L(+) Lysine in Rats Studied with Deuterium and Heavy Nitrogen. J. biol. Chemistry 140, 779 (1941).

    CAS  Google Scholar 

  201. Westerfield, W. W. and D. A. Richert: Dietary Effects on Liver Xanthine Oxidase. Federat. Proc. (Amer. Soc. exp. Biol.) 8, 265 (1949).

    Google Scholar 

  202. Williams, J. N., Jr. and C. A. Elvehjem: The Relation of Amino Acid Availability in Dietary Protein to Liver Enzyme Activity. J. biol. Chemistry 181, 559 (1949)

    CAS  Google Scholar 

  203. Winnick, T.: Studies on the Mechanism of Protein Synthesis in Embryonic and Tumor Tissues. I. Evidence Relating to the Incorporation of Labeled Amino Acids into Protein Structure in Homogenates. Arch. Biochemistry 27, 65 (1950).

    CAS  Google Scholar 

  204. Winnick, T.: Studies on the Mechanism of Protein Synthesis in Embryonic and Tumor Tissues. II. Inactivation of Fetal Rat Liver Homogenates by Dialysis, and Reactivation by the Adenylic Acid System. Arch. Biochemistry 28, 338 (1950).

    CAS  Google Scholar 

  205. Winnick, T., F. Friedberg and D. M. Greenberg: Incorporation Of C14-Labeled Glycine into Intestinal Tissue and its Inhibition by Azide. Arch. Biochemistry 55, 160 (1947)

    Google Scholar 

  206. Winnick, T., F. Friedbergand D. M. Greenberg: Studies in Protein Metabolism with Compoands Labeled with Radioactive Carbon. I. Metabolism of DL-Tyrosine in the Normal and Tumor-Bearing Rat. J. biol. Chemistry 173, 189 (1948).

    Google Scholar 

  207. Winnick, T., F. Friedbergand D. M. Greenberg: The Utilization of Labeled Glycine in the Process of Amino Acid Incorporation by the Protein of Liver Homogenate. J. biol. Chemistry 175, 117 (1948).

    CAS  Google Scholar 

  208. Winnick, T., E. A. Petersonand D. M. Greenberg: Incorporation of C14-Glycine into Protein and Lipide Fractions of Homogenates. Arch. Biochemistry 21, 235 (1949).

    CAS  Google Scholar 

  209. Woodward, G. E.: S85-Glutathione Preparation from Yeast and Tracer Studies in Cancerous and Non-Cancerous Rats. J. Franklin Inst. 251, 557 (1951).

    CAS  Google Scholar 

  210. Work, T. S. and E. Work: The Basis of Chemotherapy, p. 227. New York: Interscience Publ. 1948.

    Google Scholar 

  211. Yeshoda, K. M. and M. Damodaran: Amino-Acids and Proteins in Haemoglobin Formation. Biochemic. J. 41, 382 (1947).

    CAS  Google Scholar 

  212. Zamecnik, P. C.: The Use of Labeled Amino Acids in the Study of the Protein Metabolism of Normal and Malignant Tissues: A Review. Cancer Res. 10, 659 (1950)

    CAS  Google Scholar 

  213. Zamecnik, P. C. and I. D. Frantz, Jr.: Peptide Bond Synthesis in Normal and Malignant Tissue. Cold Spring Harbor Sympos. quantitat. Biol. 14, 199 (1949)

    CAS  Google Scholar 

  214. Zamecnik, P. C., I. D. Frantz, Jr., R. B. Loftfieldand M. L. Stephenson: Incorporation In Vitro of Radioactive Carbon from Carboxyl-Labeled DL-Alanine and Glycine into Proteins of Normal and Malignant Rat Livers. J. biol. Chemistry 175, 299 (1948).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1952 Wien · Springer-Verlag

About this chapter

Cite this chapter

Borsook, H. (1952). The Biosynthesis of Proteins and Peptides, including Isotopic Tracer Studies. In: Zechmeister, L. (eds) Fortschritte der Chemie Organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products/Progrès Dans La Chimie Des Substances Organiques Naturelles. Fortschritte der Chemie Organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products/Progrès Dans La Chimie Des Substances Organiques Naturelles, vol 9. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7169-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7169-1_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7171-4

  • Online ISBN: 978-3-7091-7169-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics