Skip to main content

Mechanisms of Input and Output in Circadian Transduction Pathways

  • Chapter
Signal Transduction in Plant Growth and Development

Part of the book series: Plant Gene Research ((GENE))

Abstract

Many important cellular processes are observed to occur rhythmically with peak activity occurring once every twenty-four hours. These rhythms have been demonstrated to be under endogenous control, as they occur under constant environmental conditions (for review, see Edmunds, 1988). The cellular machinery that generates circadian rhythms is known collectively as the biological clock. An understanding of the molecular components that constitute these ubiquitous pacemakers will have broad significance for many organisms, including humans. Recent progress in systems such as Drosophila (Dunlap, 1993; Hall, 1990) and Neurospora (Dunlap, 1990, 1993) as well as vertebrate species (Takahashi, 1991, 1993; Ralph et al., 1990) has demonstrated that clocks are accessible to genetic and molecular dissection. In the case of Drosophila and Neurospora, genetic approaches have identified, respectively, the period (per) and frequency (frq) loci (amongst others), mutations of which lead to a variety of abnormal clock functions (Dunlap, 1990, 1993; Hall, 1990; see below). Physiological studies in the invertebrates, Bulla (McMahon and Block, 1987), Aplysia (Jacklet and Lotshaw, 1986), the avian pineal gland (Takahashi, 1991), and the mammalian suprachiasmatic nucleus (Takahashi, 1993; Ralph et al., 1990) have demonstrated the existence of pacemaker organs and identified some of the intracellular messengers that are involved in generating rhythms. In the marine unicellular alga Gonyaulax, biochemical studies have revealed that translation of the luciferin binding protein mrna is circadian-regulated (Morse et al., 1989a; Mittag et al., 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson SL, Kay SA (1995) Functional dissection of circadian clock- and phytochrome regulated transcription of the Arabidopsis CAB2 gene. Proc Natl Acad Sci USA 92: 1500–1504

    Article  PubMed  CAS  Google Scholar 

  • Anderson SL, Teakle GR, Martino-Catt SJ, Kay SA (1994) Circadian clock- and phytochrome-regulated transcription is conferred by a 78 bp cis-acting domain of the Arabidopsis CAB2 promoter. Plant 6: 457–470

    Article  CAS  Google Scholar 

  • Aronson BD, Johnson KA, Loros JJ, Dunlap JC (1994) Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. Science 263: 1578–1584

    Article  PubMed  CAS  Google Scholar 

  • Assmann SM (1993) Signal transduction in guard cells. Annu Rev Cell Biol 9: 345–375

    Article  PubMed  CAS  Google Scholar 

  • Bollig IC, Mayer K, Mayer W-E, Engelmann W (1978) Effects of camp, theophyllin, imidazole, and 4 - (3,4 - dimethoxybenzy 1) - 2 - imidazole on the leaf movement rhythm of Trifolium repens test of the camp hypothesis. Planta 141: 225–230

    Article  CAS  Google Scholar 

  • Borello U, Ceccarelli E, Giuliano G (1993) Constitutive, light-responsive and circadian clock responsive factors compete for the different I box elements in plant light-regulated promoters. Plant J 4: 611–619

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Chua N-H (1994) Emerging themes of plant signal transduction. Plant Cell 6: 1529–1541

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Neuhaus G, Yamagata H, Chua N-H (1994a) Cyclic gmp and calcium mediate phy-tochrome phototransduction. Cell 77: 73–81

    Article  PubMed  CAS  Google Scholar 

  • Bowler C, Yamagata H, Neuhaus G, Chua N-H (1994b) Phytochrome signal transduction pathways are regulated by reciprocal control mechanisms. Genes Dev 8: 2188–2202

    Article  PubMed  CAS  Google Scholar 

  • Chalmers DE, Kyriacou CP (1993) Glowing reports on biorhythm research. Bioessays 15: 755–756

    Article  PubMed  CAS  Google Scholar 

  • Crain RC (1990) Phototransduction in the Samanea pulvinus: role of accelerated phosphatidyl inositol turnover. In: Satter RL (eds) The pulvinus: motor organ for leaf movement. American Society of Plant Physiologists, Rockville, MD, pp 175–188

    Google Scholar 

  • Dunlap JC (1990) Closely watched clocks: molecular analysis of circadian rhythms in Neurospora and Drosophila. Trends Genet 6: 159–165

    Article  PubMed  CAS  Google Scholar 

  • Dunlap JC (1993) Genetic analysis of circadian clocks. Annu Rev Physiol 55: 683–728

    Article  PubMed  CAS  Google Scholar 

  • Edmunds LN (1988) Cellular and molecular bases of biological clocks. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Engelmann W, Simon K, Phen CJ (1994) Leaf movement in Arabidopsis thaliana. Z Naturforsch 47: 925–928

    Google Scholar 

  • Fallon KM, Shacklock PS, Trewavas A J (1993) Detection in vivo of very rapid red light induced calcium-sensitive protein phosphorylation in etiolated wheat ( Triticum aestivum) leaf protoplasts. Plant Physiol 101: 1039–1045

    PubMed  CAS  Google Scholar 

  • Fejes E, Pay A, Kanevsky I, Szell M, Adam E, Kay S, Nagy F (1990) A 268 bp upstream sequence mediates the circadian clock-regulated transcription of the wheat Cab-1 gene in transgenic plants. Plant Mol Biol 15: 921–932

    Article  PubMed  CAS  Google Scholar 

  • Ginty DD, Kornhauser JM, Thompson MA, Bading H, Mayo KE, Takahashi JS, Greenberg ME (1993) Regulation of creb phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science 260: 238–241

    Article  PubMed  CAS  Google Scholar 

  • Goodenough JE, Bruce VG (1980) The effects of caffeine and theophylline on the phototactic rhythm of Chlamydomonas rheinhardii. Biol Bull 159: 649–655

    Article  CAS  Google Scholar 

  • Gorton HL (1990) Stomates and pulvini: a comparison of two rhythmic, turgor-mediated movement systems. In: Satter RL (eds) The pulvinus: motor organ for leaf movement. The American Society of Plant Physiologists, Rockville, MD, pp 223–237

    Google Scholar 

  • Gorton HL, Williams WE, Binns ME, Gemmell CN, Leheny EA, Shepherd AC (1989) Circadian stomatal rhythms in epidermal peels from Viciafaba. Plant Physiol 90: 1329–1334

    Article  PubMed  CAS  Google Scholar 

  • Gorton HL, Williams WE, Assmann SM (1993) Circadian rhythms in stomatal responsiveness to red and blue light. Plant Physiol 103: 399–406

    PubMed  CAS  Google Scholar 

  • Green PJ, Kay SA, Chua N-H (1987) Sequence-specific interaction of a pea nuclear factor with light-responsive elements upstream of the rbcS-3A gene. EMBO J 6: 2543–2549

    PubMed  CAS  Google Scholar 

  • Halaban R (1969) Effect of light quality on the circadian rhythm of leaf movement of a short-day plant. Plant Physiol 44: 973–977

    Article  PubMed  CAS  Google Scholar 

  • Hall JC (1990) Genetics of circadian rhythms. Annu Rev Genet 24: 659–697

    Article  PubMed  CAS  Google Scholar 

  • Hall JC, Rosbash M (1993) Oscillating molecules and how they move circadian clocks across evolutionary boundaries. Proc Natl Acad Sci USA 90: 5382–5383

    Article  PubMed  CAS  Google Scholar 

  • Hardin PE, Hall JC, Rosbash M (1990) Feedback of the Drosophila period gene product on circadian cycling of its messenger rna levels. Nature 343: 536–540

    Article  PubMed  CAS  Google Scholar 

  • Hennessey TL, Field CB (1992) Evidence of multiple circadian oscillators in bean plants. J Biol Rhythms 7: 105–113

    Article  PubMed  CAS  Google Scholar 

  • Hiratsuka K, Wu X, Chua N-H (1994) Molecular dissection of GT-1 from Arabidopsis. Plant Cell 6: 1805–1813

    Article  PubMed  CAS  Google Scholar 

  • Huang ZJ, Edery I, Rosbash M (1993) PAS is a dimerization domain common to Drosophila period and several transcription factors. Nature 364: 259–262

    Article  PubMed  CAS  Google Scholar 

  • Jacklet JW, Lotshaw DP (1986) Involvement of protein synthesis in the circadian clock of the Aplysia eye. Am J Physiol 250: 5–17

    Google Scholar 

  • Kay SA (1993) Shedding light on clock controlled cab gene transcription in higher plants. Sem Cell Biol 4: 81–86

    Article  CAS  Google Scholar 

  • Kay SA, Millar AJ, Smith KW, Anderson SL, Brandes C, Hall JC (1994) Video imaging of regulated firefly luciferase activity in transgenic plants and Drosophila. Promega Notes 49: 22–27

    Google Scholar 

  • Kim HY, Cote GC, Crain RC (1993) Potassium channels in Samanea saman protoplasts controlled by photochrome and the biological clock. Science 260: 960–962

    Article  PubMed  CAS  Google Scholar 

  • Kondo T, Tsinoremas NF, Golden SS, Johnson CH, Kutsuna S, Ishiura M (1994) Circadian clock mutants of cyanobacteria. Science 266: 1233–1236

    Article  PubMed  CAS  Google Scholar 

  • Konopka RJ, Pittendrigh CS, Orr D (1995) Reciprocal behavior associated with altered homeostasis and photosensitivity of Drosophila clock mutants. J Neurogenet 6: 1–10

    Article  Google Scholar 

  • Kyriacou CP (1994) Clock research perring along: it’s about time! Trends Genet 10: 69–71

    Article  PubMed  CAS  Google Scholar 

  • Lam E, Chua N-H (1990) GT-1 binding site confers light responsive expression in transgenic tobacco. Science 248: 471–474

    Article  PubMed  CAS  Google Scholar 

  • Lohse G, Hedrich R (1992) Characterization of the plasma membrane H+-ATPase from Vida faba guard cells. Pianta 188: 206–214

    Article  CAS  Google Scholar 

  • Luan S, Li W, Rusnak F, Assmann SM, Schreiber SL (1993) Immunosuppressants implicate protein phosphatase regulation of K+ channels in guard cells. Proc Natl Acad Sci USA 90: 2202–2206

    Article  PubMed  CAS  Google Scholar 

  • McClung CR, Kay SA (1994) Circadian rhythms in Arabidopsis thaliana. In: Somerville CS, Meyerowitz E (eds) Arabidopsis thaliana. Cold Spring Harbor Press, Cold Spring Harbor, pp 615–637

    Google Scholar 

  • McMahon DG, Block GD (1987) The Bulla circadian pacemaker I. Pacemaker neuron membrane potential controls phase through a calcium-dependent mechanism. J Comp Physiol A 161: 335–346

    Article  PubMed  CAS  Google Scholar 

  • Millar AJ, Short SR, Chua N-H, Kay SA (1992a) A novel circadian phenotype based on firefly luciferase expression in transgenic plants. Plant Cell 4: 1075–1087

    Article  PubMed  CAS  Google Scholar 

  • Millar AJ, Short SR, Hirasuka K, Chua N-H, Kay SA (1992b) Firefly luciferase as a reporter of regulated gene expression in higher plants. Plants Mol Biol Rep 10: 324–337

    Article  CAS  Google Scholar 

  • Millar AJ, McGrath RB, Chua N-H (1994) Phytochrome phototransduction pathways. Annu Rev Gen 28: 325–349

    Article  CAS  Google Scholar 

  • Millar AJ, CarrĂ© LA, Strayer CA, Chua N-H, Kay SA (1995a) Circadian clock mutants in Arabidopsis identified by luciferase imaging. Science 267: 1161–1163

    Article  PubMed  CAS  Google Scholar 

  • Millar AJ, Straume M, Chory J, Chua N-H, Kay SA (1995b) The regulation of circadian period by phototransduction pathways in Arabidopsis. Science 267: 1163–1166

    Article  PubMed  CAS  Google Scholar 

  • Mittag M, Lee D-H, Hastings W (1994) Circadian expression of the luciferin-binding protein correlates with the binding of a protein to the 3 untranslated region of its mRNA. Proc Natl Acad Sci USA 91: 5257–5261

    Article  PubMed  CAS  Google Scholar 

  • Molina CA, Foulkes NS, Lalli E, Sassone-Corsi P (1993) Inducibility and negative autoregulation of crem: an alternative promoter directs the expression of icer, an early response repressor. Cell 75: 875–886

    Article  PubMed  CAS  Google Scholar 

  • Moran N (1990) The role of ion channels in osmotic volume changes in Samanea motor cells analysed by patch-clamp methods. In: Satter RL (eds) The pulvinus: motor organ for leaf movement. American Society of Plant Physiologists, Rockville, MD, pp 142–159

    Google Scholar 

  • Morse D, Milos PM, Roux E, Hastings JW (1989a) Orcadian regulation of the synthesis of substrate binding protein in the Gonyaulax bioluminescent system involves translational control. Proc Natl Acad Sci USA 86: 172–176

    Article  PubMed  CAS  Google Scholar 

  • Morse MJ, Crain RC, Cote GG, Satter RL (1989b) Light-stimulated inositol phospholipid turnover in Samanea soman pulvini: increased levels of diacyl glycerol. Plant Physiol 89: 724–727

    Article  PubMed  CAS  Google Scholar 

  • Nagy F, Kay SA, Chua N-H (1988) A circadian clock regulates transcription of the wheat Cab-1 gene. Genes Dev 2: 376–382

    Article  CAS  Google Scholar 

  • Nakashima H (1984) Calcium inhibits phase-shifting of the circadian conidiation rhythm of Neurospora crassa by the calcium ionophore A23187. Plant Physiol 74: 268–271

    Article  PubMed  CAS  Google Scholar 

  • Neuhaus G, Bowler C, Kern R, Chua N-H (1993) Calcium calmodulin-dependent and -independent phytochrome signal transduction pathways. Cell 73: 937–952

    Article  PubMed  CAS  Google Scholar 

  • Page TL (1994) Time is the essence: molecular analysis of the biological clock. Science 263: 1570–1572

    Article  PubMed  CAS  Google Scholar 

  • Pepper A, Delaney T, Chory J (1993) Genetic interaction in plant photomorphogenesis. Sem Dev Biol 4:

    Google Scholar 

  • Pittendrigh CS (1965) On the mechanism for the entrainment of a circadian rhythm by light cycles. In: Ashoff J (ed) Circadian clocks. North-Holland, Amsterdam, pp 227–297

    Google Scholar 

  • Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247: 975–978

    Article  PubMed  CAS  Google Scholar 

  • Roenneberg T, Hastings JW (1988) Two photoreceptors control the circadian clock of a unicellar alga. Naturwissenschaften 75: 206–207

    Article  PubMed  CAS  Google Scholar 

  • Roenneberg T, Morse D (1993) Two circadian oscillators in one cell. Nature 362: 362–364

    Article  Google Scholar 

  • Satter RL (1990) Leaf movement, an overview of the field. In: Satter RL (ed) The pulvinus: motor organ for leaf movement. American Society of Plant Physiologists, Rockville, MD, pp l-9

    Google Scholar 

  • Satter RL, Galston AW (1981) Mechanisms of control of leaf movements. Annu Rev Plant Phys 32: 83–110

    Article  CAS  Google Scholar 

  • Satter RL, Morse MJ (1990) Light-modulated, circadian rhythmic leaf movements in nyctinastic legumes. In: Satter RL (ed) The pulvinus: motor organ for leaf movements. American Society of Plant Physiologists, Rockville, MD, pp 10–24

    Google Scholar 

  • Satter RL, Geballe GT, Applewhite PB, Galston AW (1974) Potassium flux and leaf movement in Samanea soman. I. Rhythmic movement. J Gen Physiol 64: 413–430

    Article  PubMed  CAS  Google Scholar 

  • Schaller GE, Sussman MR (1988) Phosphorylation of the plasma membrane H+-ATPase of oat roots by a calcium stimulated protein kinase. Planta 173: 509–518

    Article  CAS  Google Scholar 

  • Schroeder JI, Fang HH (1991) Inward-rectifying K+ channels in guard cells provide a mechanism for low affinity K+ uptake. Proc Natl Acad Sci USA 88: 11583–11587

    Article  PubMed  CAS  Google Scholar 

  • Schroeder JI, Hagiwara S (1989) Cytosolic calcium regulates ion channels in the plasma membrane of Viciafaba guard cells. Nature 338: 427–430

    Article  Google Scholar 

  • Sehgal A, Price JL, Man B, Young MW (1994) Loss of circadian behavioral rhythms and per rna oscillations in the Drosophila mutant timeless. Science 263: 1603–1605

    Article  PubMed  CAS  Google Scholar 

  • Shacklock PS, Read ND, Trewavas AJ (1992) Cytosolic free calcium mediates red light induced photomorphogenesis. Nature 358: 753–755

    Article  CAS  Google Scholar 

  • Shimazaki KI, Kinoshita T, Nishimura M (1992) Involvment of calmodulin and calmodulin-dependent myosin light chain kinase in blue light-dependent H+ pumping by guard cells protoplasts from Viciafaba L. Plant Physiol 99: 1416–1421

    Article  PubMed  CAS  Google Scholar 

  • Stehle JH, Foulkes NS, Molina CA, Simonneaux V, Pevet P, Sassone-Corsi P (1993) Adrenergic signals direct rhythmic expression of transcriptional repressor crem in the pineal gland. Nature 365: 314–320

    Article  PubMed  CAS  Google Scholar 

  • Sweeney BM (1987) Rhythmic phenomena in plants. Academic Press, San Diego

    Google Scholar 

  • Takahashi JS (1991) Orcadian rhythms: from gene expression to behavior. Curr Opin Neurobiol 1: 556–561

    Article  PubMed  CAS  Google Scholar 

  • Takahashi JS (1993) Orcadian clocks a la crem. Nature 365: 299–300

    Article  PubMed  CAS  Google Scholar 

  • Takahashi JS, Pinto LH, Vitaterna MH (1994) Forward and reverse genetic approaches to behavior in the mouse. Science 264: 1724–1733

    Article  PubMed  CAS  Google Scholar 

  • Tamponnet C, Edmunds LNJ (1990) Entrainment and phase-shifting of the circadian rhythm of cell division by calcium in synchronous cultures of the wild type Z strain and of the ZC achlorophyllous mutant of Euglena gracilis. Plant Physiol 93: 425–431

    Article  PubMed  CAS  Google Scholar 

  • Thiel G, MacRobbie EAC, Blatt MR (1992) Membrane transport in stomatal guard cells: the importance of voltage control. J Membr Physiol 126: 1–18

    CAS  Google Scholar 

  • Vitaterna MH, King DP, Chang A-M, Kornhauser JM, Lowrey PL, McDonald JD, Dove WF, Pinto LH, Turek FW, Tahakashi JS (1994) Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264: 719–725

    Article  PubMed  CAS  Google Scholar 

  • Vosshall LB, Price JL, Sehgal A, Saez L, Young MW (1994) Block in nuclear localization of period protein by a second clock mutation, timeless. Science 263: 1606–1609

    Article  PubMed  CAS  Google Scholar 

  • Wuarin J, Schibler U (1990) Expression of the liver-enriched transcriptional activator protein DBP follows a stringent circadian rhythm. Cell 63: 1257–1266

    Article  PubMed  CAS  Google Scholar 

  • Wuarin J, Falvey E, Lavery D, Talbot D, Schmidt E, Ossipow V, Fonjallaz P, Schibler U (1992) The role of the transcriptional activator protein DBP in circadian liver gene expression. J Cell Sci 103 [Suppl 16]: 123–127

    Google Scholar 

  • Zeng H, Hardin PE, Rosbash M (1994) Constitutive overexpression of the Drosophila period protein inhibits period mrna cycling. EMBO J 13: 3590–3598

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag/Wien

About this chapter

Cite this chapter

Carré, I., Kay, S.A. (1996). Mechanisms of Input and Output in Circadian Transduction Pathways. In: Verma, D.P.S. (eds) Signal Transduction in Plant Growth and Development. Plant Gene Research. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7474-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7474-6_10

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7476-0

  • Online ISBN: 978-3-7091-7474-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics