Skip to main content

Practical Aspects of Absorption Edge Spectrometry

  • Chapter
Fundamentals of Inelastic Electron Scattering
  • 235 Accesses

Abstract

Since each element has ionisation edges at characteristic energies, the main aspect in edge spectroscopy is elemental analysis. The task of deciding which element(s) a particular sample consists of, is relatively easy to perform by observation of structure at ionisation energy losses in the elsewhere smooth spectrum. Quantitation of loss spectra is quite another story, complicated by such facts as insufficient knowledge of cross sections, instrumental aberrations and instabilities, or masking effects (background intensity, multiple scattering, etc.). At present an accuracy of 20 % in quantitation seems to be realistic, although better figures have been obtained in particular cases [3.1], [2.19]. The same holds for the lower detection limit of mass fraction which is, for routine application, on the order of 5 atom % [3.18], whereas under special circumstances, minima of some 0.01 at % [3.10] to 0.5 at % [3.2] are given. As to the absolute lower detection limit, there are several calculations, yielding some ten atoms [3.19], [3.9] up to some 100 atoms [3.20].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. a Egerton RF (1981) Ultramicroscopy 7, 207

    Article  Google Scholar 

  2. b Joy DC, Maher DM (1981) J Microsc 124, 37

    Article  Google Scholar 

  3. Colliex C (1982) J Microsc Spectrosc Electron 7, 525

    CAS  Google Scholar 

  4. Williams BG (ed.) (1977) Compton Scattering. McGraw-Hill, New York

    Google Scholar 

  5. Williams BG, Sparrow TG, Egerton RF (1984) Proc Roy Soc London A 393, 409

    Article  CAS  Google Scholar 

  6. Williams BG, Thomas JM (1983) Internat Rev Phys Chem 3, 39

    Article  CAS  Google Scholar 

  7. Weyrich W, Pattison P, Williams BG (1979) Chem Phys 41, 271

    Article  CAS  Google Scholar 

  8. Tafto J, Krivanek OL (1982) Phys Rev Lett 48, 560

    Article  CAS  Google Scholar 

  9. b Tafto J, Krivanek OL (1982) Nuclear Instr Meth 194, 153 3.7 Leapman RD, Cosslett VE (1976) J Phys D 9, L29

    Article  Google Scholar 

  10. Leapman RD, Cosslett VE (1976) J Phys D 9, L29

    Google Scholar 

  11. Egerton RF (1981) Proc of the 39. EMSA-Meeting, 198

    Article  CAS  Google Scholar 

  12. b Egerton RF (1981) J Microsc 123, 333

    Article  CAS  Google Scholar 

  13. Joy DC, Maher DM (1980) Ultramicroscopy 5, 333 3.10 Isaacson M, Johnson D (1975) Ultramicroscopy 1, 33

    Google Scholar 

  14. Isaacson M, Johnson D (1975) Ultramicroscopy 1, 33

    Google Scholar 

  15. Eisenberger P, Platzmann PM (1970) Phys Rev A 2, 415 3. 12 Bauer GEW, Schneider JR (1983) Solid State Communica-

    Google Scholar 

  16. Bauer GEW, Schneider JR (1983) Solid State Communications 47 (9), 673

    Google Scholar 

  17. Hirsch P, Howie A, Nicholson RB, Pashley DW, Whelan MJ (1977) Electron Microscopy of thin Crystals. Krieger, New York

    Google Scholar 

  18. Williams BG, Bourdillon AJ (1982) J Phys C: Solid State Phys 15, 6881

    Article  CAS  Google Scholar 

  19. Leapman R (1984) Electron Beam Interactions with Solids. AMF O’Hare, Chicago

    Google Scholar 

  20. Brown FC (1974) Sol State Phys 29, 1

    Article  Google Scholar 

  21. Economou EN (1979) Green’s Functions in Quantum Physics.Springer Series in Solid State Phys 7, Springer, Berlin

    Google Scholar 

  22. Colliex C, Trebbia P (1982) Ultramicroscopy 9, 259

    Article  CAS  Google Scholar 

  23. Colliex C, Krivanek OL, Trebbia P (1981) Inst Phys Conf Ser61, 183

    Google Scholar 

  24. Cazaux J (1983) Ultramicroscopy 12, 83

    Article  CAS  Google Scholar 

  25. Hitchcock AP, Teng CH (1985) Surf Sci 149, 558

    Article  CAS  Google Scholar 

  26. Egerton RF (1982) Phil Trans R Soc London A 305, 521

    Article  CAS  Google Scholar 

  27. Wong J (1981) Topics in Applied Physics 46, 45

    CAS  Google Scholar 

  28. Egerton RF (1980) Instrumentation and Software for Electron Energy Loss Microanalysis. In: Scanning Electron Microscopy. AMF O’Hare, Chicago

    Google Scholar 

  29. Silcox J (1979) Ultramicrosc 3, 409

    Article  Google Scholar 

  30. Johnson DE (1984) Electron Energy Loss Spectrometry. In: Echlin P (ed.) Analysis of Organic and Biological Surfaces. Wiley & Sons, New York

    Google Scholar 

  31. Disko MM, Spence JCH, Sankey OF, Saldin D (1986) Phys Rev B33, 5642

    Article  CAS  Google Scholar 

  32. Egerton RF (1986) Electron Energy Loss Spectroscopy in the Electron Microscope. Plenum Press, New York, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag/Wien

About this chapter

Cite this chapter

Schattschneider, P. (1986). Practical Aspects of Absorption Edge Spectrometry. In: Fundamentals of Inelastic Electron Scattering. Springer, Vienna. https://doi.org/10.1007/978-3-7091-8866-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-8866-8_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81937-1

  • Online ISBN: 978-3-7091-8866-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics