Skip to main content

Simultaneous and Sequential Treatment with Radiation and Hyperthermia: A Comparative Assessment

  • Chapter
Interstitial Hyperthermia

Abstract

Hyperthermia is a modality which on its own probably has no role to play in the curative treatment of tumours in humans (Overgaard, 1985). Its most likely clinical application is in combination with other cancer treatments, especially radiation. Numerous experimental studies have now established that moderate hyperthermia can enhance the response of animal tumours to ionizing radiation (for review, see Horsman and Overgaard, 1989). There is now also good evidence from clinical Phase I and II studies showing that heat can enhance the radiation effect to a significant degree in a variety of human tumours (Overgaard, 1989a). However, it is still not entirely clear as to how the radiation and heat should be combined clinically, in order to obtain the greatest therapeutic advantage. In the following chapter we would therefore like to discuss the basic mechanisms underlying the interaction between hyperthermia and radiation and then to consider how these modalities should be given to produce the maximal therapeutic benefit in a given clinical situation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arcangeli G, Nervi C, Cividalli A, Lovisolo GA, Mauro F (1984) The clinical use of experimental parameters to evaluate the response of combined heat (HT) and radiation (RT). In: Overgaard J (ed) Hyper-thermic Oncology 1984, vol 1. Summary papers. Taylor & Francis, London, New York, Philadelphia, pp 329–332

    Google Scholar 

  • Bowden GT, Kasunic M, Cress AE (1982) Thermal enhancement of X-ray-induced DNA crosslinking. Radiat Res 89: 203–208

    Article  PubMed  CAS  Google Scholar 

  • Brezovich IA, Lilly MB, Meredith RF, Weppelmann B, Henderson RA, Brawner J, Salter MM (1990) Hyperthermia of pet animal tumours with self-regulating ferromagnetic thermoseeds. Int J Hyperthermia 6: 117–130

    Article  PubMed  CAS  Google Scholar 

  • Clark EP, Dewey WC, Lett JT (1981) Recovery of CHO cells from hyperthermic potentiation to X rays: Repair of DNA and chromatin. Radiat Res 85: 302–313

    Article  PubMed  CAS  Google Scholar 

  • Corry PM, Robinson S, Getz S (1977) Hyper-thermic effects on DNA repair mechanisms. Radiology 123: 475–482

    PubMed  CAS  Google Scholar 

  • Dewey WC, Freeman ML, Raaphorst GP, Clark EP, Wong RSL, Highfield DP, Spiro IJ, Tomasovic SP, Denman DL, Coss RA (1980) Cell biology of hyperthermia and radiation. In: Meyn RE, Withers HR (eds) Radiation Biology in Cancer Research. Raven Press, New York, pp 589–621

    Google Scholar 

  • Dewey WC, Thrall DE, Gillette EL (1977) Hyperthermia and radiation — a selective thermal effect on chronically hypoxic tumor cells in vivo. Int J Radiat Oncol Biol Phys 2: 99–103

    PubMed  CAS  Google Scholar 

  • Eddy HA (1980) Alterations in tumor microvasculature during hyperthermia. Radiology 137: 515–521

    PubMed  CAS  Google Scholar 

  • Field SB, Bleehen NM (1979) Hyperthermia in the treatment of cancer. Cancer Treat Rev 6: 63–94

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (1976) The vascularization of tumors. Sci Am 234: 58–73

    Article  PubMed  CAS  Google Scholar 

  • Gerweck LE, Gillette EL, Dewey WC (1974) Killing of Chinese hamster cells in vitro by heating under hypoxic or aerobic conditions. Eur J Cancer 10: 691–693

    Article  PubMed  CAS  Google Scholar 

  • Gerweck LE, Nygaard TG, Burlett M (1979) Response of cells to hyperthermia under acute and chronic hypoxic conditions. Cancer Res 39: 966–972

    PubMed  CAS  Google Scholar 

  • Gillette EL, Ensley BA (1979) Effect of heating order on radiation response of mouse tumor and skin. Int J Radiat Oncol Biol Phys 5: 209–213

    PubMed  CAS  Google Scholar 

  • Hahn GM (1974) Metabolic aspects of the role of hyperthermia in mammalian cell inactivation and their possible relevance to cancer treatment. Cancer Res 34: 3117–3123

    PubMed  CAS  Google Scholar 

  • Hahn GM (1982) Hyperthermia and Cancer. Plenum Press, New York

    Google Scholar 

  • Hartson-Eaton M, Malcolm AW, Hahn GM (1984) Radiosensitivity and thermosensitization of thermotolerant Chinese hamster cells and RIF-1 tumors. Radiat Res 99: 175–184

    Article  PubMed  CAS  Google Scholar 

  • Henderson BW, Waldow SM, Potter WR, Dougherty TJ (1985) Interaction of photo-dynamic therapy and hyperthermia: Tumor response and cell survival studies after treatment of mice in vivo. Cancer Res 45: 6071–6077

    PubMed  CAS  Google Scholar 

  • Henle KJ, Leeper DB (1976) Combinations of hyperthermia (40°, 45°C) with radiation. Radiology 121: 451–454

    PubMed  CAS  Google Scholar 

  • Henle KJ, Leeper DB (1977) The modification of radiation damage in CHO cells by Simultaneous and Sequential Radiation and Heat 29 hyperthermia at 40 and 45°C. Radiat Res 70: 415–424

    Article  PubMed  CAS  Google Scholar 

  • Henle KJ, Leeper DB (1979) Interaction of sublethal and potentially lethal 45° — hyperthermia and radiation damage at 0, 20, 37 or 40°C. Eur J Cancer 15: 1387–1394

    Article  PubMed  CAS  Google Scholar 

  • Hill RP (1987) Cellular basis of radiotherapy. In: Tannock IF, Hill RP (eds) The Basic Science of Oncology. Pergamon Press, New York, pp 237–255

    Google Scholar 

  • Hill SA, Denekamp J (1978) The effect of vascular occlusion on the thermal sensitization of a mouse tumour. Br J Radiol 51: 997–1002

    Article  PubMed  CAS  Google Scholar 

  • Hill SA, Denekamp J (1979) The response of six mouse tumours to combined heat and X-rays: Implications for therapy. Br J Radiol 52: 209–218

    Article  PubMed  CAS  Google Scholar 

  • Hiraoka M, Hahn GM (1990) Changes in pH and blood flow induced by glucose, and their effects on hyperthermia with or without BCNU in RIF-1 tumours. Int J Hyperthermia 6: 97–103

    Article  PubMed  CAS  Google Scholar 

  • Horsman MR, Chaplin DJ, Overgaard J (1991) The effect of combining flavone acetic acid and hyperthermia on the growth of a C3H mammary carcinoma in vivo. Int J Radiat Biol (in press)

    Google Scholar 

  • Horsman MR, Christensen KL, Chaplin DJ, Overgaard J (1991) Improved treatment of tumours in vivo by combining the bio-reductive drug RSU-1069, hydralazine and hyperthermia. In: Adams GE, Breccia A, Fielden EM, Wardman P (eds) Selective Activation of Drugs by Redox Processes. Nato ASI Series. Plenum Press, New York, pp 193–202

    Google Scholar 

  • Horsman MR, Christensen KL, Overgaard J (1989) Hydralazine induced enhancement of hyperthermic damage in a C3H mammary carcinoma in vivo. Int J Hyperthermia 5: 123–136

    Article  PubMed  CAS  Google Scholar 

  • Horsman MR, Overgaard J (1989) Thermal radiosensitization in animal tumors: The potential for therapeutic gain. In: Urano M, Douple EB (eds) Hyperthermia and Oncology, vol 2. VSP, The Netherlands, pp 113–145

    Google Scholar 

  • Horsman MR, Overgaard J, Chaplin DJ (1988) The interaction between RSU-1069, hydralazine and hyperthermia in a C3H mammary carcinoma as assessed by tumour growth delay. Acta Oncol 27: 861–862

    PubMed  CAS  Google Scholar 

  • Hume SP, Field SB (1978) Hyperthermic sensitization of mouse intestine to damage by X-rays: The effect of sequence and temporal separation of the two treatments. Br J Radiol 51: 302–307

    Article  PubMed  CAS  Google Scholar 

  • Jorritsma JBM, Konings AWT (1983) Inhibition of repair of radiation-induced strand breaks by hyperthermia, and its relationship to cell survival after hyperthermia alone. Int J Radiat Biol 43: 505–516

    Article  CAS  Google Scholar 

  • Kallinowsky F, Moehle R, Vaupel P (1989) Substantial enhancement of tumor hyper-thermic response by tumor necrosis factor. In: Sugahara T, Saito M (eds) Hyper-thermic Oncology 1988, vol 1. Taylor & Francis, London, pp 258–259

    Google Scholar 

  • Kalmus J, Okunieff P, Vaupel P (1990) Dose-dependent effects of hydralazine on microcirculatory function and hyper-thermic response of murine FSaII tumors. Cancer Res 50: 15–19

    PubMed  CAS  Google Scholar 

  • Kim JH, Hahn EW, Ahmed SA (1982) Combined hyperthermia and radiation therapy for malignant melanoma. Cancer 50: 478–482

    Article  PubMed  CAS  Google Scholar 

  • Law MP (1979) Some effects of fractionation on the response of the mouse ear to combined heat and X rays. Radiat Res 80: 360–368

    Article  PubMed  CAS  Google Scholar 

  • Law MP, Ahier RG (1982) A differential effect of prior heat treatment on the thermal enhancement of radiation damage in the ear of the mouse. Radiat Res 90: 628–637

    Article  PubMed  CAS  Google Scholar 

  • Law MP, Ahier RG, Field SB (1977) The response of mouse skin to combined hyperthermia and X-rays. Int J Radiat Biol 32: 153–163

    Article  CAS  Google Scholar 

  • Law MP, Ahier RG, Field SB (1979) The effect of prior heat treatment on the thermal enhancement of radiation damage in the mouse ear. Br J Radiol 52: 315–321

    Article  PubMed  CAS  Google Scholar 

  • Leeper D (1985) Molecular and cellular mechanisms of hyperthermia alone or combined with other modalities. In: Overgaard J (ed) Hyperthermic Oncology 1984, vol 2. Review Lectures, Symposium Summaries and Workshop Summaries. Taylor & Francis, London, pp 9–40

    Google Scholar 

  • Levendag PD, Marijnissen HPA, de Ru VJ, Versteeg JAC, van Roon GC, Star WM (1988) Interaction of interstitial photo-dynamic therapy and interstitial hyperthermia in a rat rhabdomyosarcoma — a pilot study. Int J Radiat Oncol Biol Phys 14: 139–145

    Article  PubMed  CAS  Google Scholar 

  • Lindegaard JC, Grau C, Overgaard J (1991) Effect of step-down heating on the interaction between heat and radiation in a C3H mammary carcinoma in vivo. Int J Radiat Biol (in press)

    Google Scholar 

  • Lindegaard JC, Overgaard J (1987) Factors of importance for the development of the step-down heating effect in a C3H mammary carcinoma in vivo. Int J Hyperthermia 3: 79–92

    Article  PubMed  CAS  Google Scholar 

  • Lindegaard JC, Overgaard J (1988) Effect of step-down heating on hyperthermic radiosensitization in an experimental tumor and a normal tissue in vivo. Radiother Oncol 11: 143–151

    Article  PubMed  CAS  Google Scholar 

  • Lunec J, Hesselwood IP, Parker R, Leaper S (1981) Hyperthermic enhancement of radiation cell killing in HeLa S3 cells and its effect on the production and repair of DNA strand breaks. Radiat Res 85: 116–125

    Article  PubMed  CAS  Google Scholar 

  • Marigold JCL, Hume SP (1982) Effect of prior hyperthermia on subsequent thermal enhancement of radiation damage in mouse intestine. Int J Radiat Biol 42: 509–516

    Article  CAS  Google Scholar 

  • Mills MD, Meyn RE (1981) Effects of hyperthermia on repair of radiation-induced DNA strand breaks. Radiat Res 87: 314–328

    Article  PubMed  CAS  Google Scholar 

  • Mills MD, Meyn RE (1983) Hyperthermic potentiation of unrejoined DNA strand breaks following irradiation. Radiat Res 95: 327–338

    Article  PubMed  CAS  Google Scholar 

  • Mitchel REJ, Birnboim HC (1985) Triggering of DNA strand breaks by 45°C hyperthermia and its influence on the repair of gamma-radiation damage in human white blood cells. Cancer Res 45: 2040–2045

    PubMed  CAS  Google Scholar 

  • Mittler S (1986) Effects of hyperthermia on radiation-induced chromosome breakage and loss in excision repair deficient Drosophila melanogaster. Int J Radiat Biol 50: 225–230

    Article  CAS  Google Scholar 

  • Miyakoshi J, Ikebuchi M, Furukawa M, Yamagata K, Sugahara T, Kano E (1979) Combined effects of X irradiation and hyperthermia (42 and 44°C) on Chinese hamster V-79 cells in vitro. Radiat Res 79: 77–88

    Article  PubMed  CAS  Google Scholar 

  • Moulder JE, Rockwell S (1984) Hypoxic fractions of solid tumors. Int J Radiat Oncol Biol Phys 10: 695–712

    Article  PubMed  CAS  Google Scholar 

  • Myers R, Field SB (1977) The response of the rat tail to combined heat and X-rays. Br J Radiol 50: 581–586

    Article  PubMed  CAS  Google Scholar 

  • Nielsen OS (1981) Effect of fractionated hyperthermia on hypoxic cells in vitro. Int J Radiat Biol 39: 73–80

    Article  CAS  Google Scholar 

  • Nielsen OS (1984) Fractionated hyperthermia and thermotolerance. Danish Med Bull 31: 376–390

    PubMed  CAS  Google Scholar 

  • Nielsen OS, Overgaard J, Kamura T (1983) Influence of thermotolerance on the interaction between hyperthermia and radiation in a solid tumour in vivo. Br J Radiol 56: 267–273

    Article  PubMed  CAS  Google Scholar 

  • Overgaard J (1980) Simultaneous and sequential hyperthermia and radiation treatment of an experimental tumor and its surrounding normal tissue in vivo. Int J Radiat Oncol Biol Phys 6: 1507–1515

    PubMed  CAS  Google Scholar 

  • Overgaard J (1981) Fractionated radiation and hyperthermia experimental and clinical studies. Cancer 48: 1116–1123

    Article  PubMed  CAS  Google Scholar 

  • Overgaard J (1982) Influence of sequence and interval on the biological response to combined hyperthermia and radiation. NCI Mono 61: 325–332

    CAS  Google Scholar 

  • Overgaard J (1984) Time-temperature relationship for hyperthermic cytotoxicity and radiosensitization implications for a thermal dose unit. In: Overgaard J (ed), Hyperthermic Oncology 1984, vol 1. Taylor & Francis, London, pp 191–194

    Google Scholar 

  • Overgaard J (1985) Rationale and problems in the design of clinical trials. In: Overgaard J (ed) Hyperthermic Oncology 1984, vol 2. Review Lectures, Symposium Summaries and Workshop Summaries. Taylor & Francis, London, pp 325–338

    Google Scholar 

  • Overgaard J (1987) The design of clinical trials in hyperthermia. In: Field SB, Fran-coni C (eds) Physics and Technology of Hyperthermia. Martinus Nijhoff, Amsterdam, pp 598–620

    Google Scholar 

  • Overgaard J (1989a) The current and potential role of hyperthermia in radiotherapy. Int J Radiat Oncol Biol Phys 16: 535–549

    Article  CAS  Google Scholar 

  • Overgaard J (1989b) Combined hyperthermia and radiation treatment of malignant melanoma. In: Sugahara T (ed) Hyperthermic Oncology 1988, vol 2. Special Plenary Lectures, Plenary Lectures, and Symposium and Workshop Summaries, Taylor & Francis, London, pp 464–467

    Google Scholar 

  • Overgaard J (1989c) Sensitization of hypoxic tumour cells — clinical experience. Int J Radiat Biol 56: 801–811

    Article  CAS  Google Scholar 

  • Overgaard J, Bichel P (1977) The influence of hypoxia and acidity on the hyperthermic response of malignant cells in vitro. Radiology 123: 511–514

    PubMed  CAS  Google Scholar 

  • Overgaard J, Nielsen OS (1980) The role of tissue environmental factors on the kinetics and morphology of tumor cells exposed to hyperthermia. Ann NY Acad Sci 335: 254–280

    Article  PubMed  CAS  Google Scholar 

  • Overgaard J, Nielsen OS (1983) The importance of thermotolerance for the clinical treatment with hyperthermia. Radiother Oncol 1: 167–178

    Article  PubMed  CAS  Google Scholar 

  • Overgaard J, Nielsen OS (1984) Influence of thermotolerance on the effect of combined hyperthermia and radiation in a C3H mammary carcinoma in vivo. In: Overgaard J (ed) Hyperthermic Oncology 1984, vol 1. Summary papers, Taylor & Francis, London, pp 227–230

    Google Scholar 

  • Overgaard J, Nielsen OS, Lindegaard JC (1987) Biological basis for rational design of clinical treatment with combined hyperthermia and radiation. In: Field SB, Fran-coni C (eds) Physics and Technology of Hyperthermia. Martinus Nijhoff, Amsterdam, pp 54–79

    Google Scholar 

  • Overgaard J, Overgaard M (1987) Hyperthermia as an adjuvant to radiotherapy in the treatment of malignant melanoma. Int J Hyperthermia 3: 483–501

    Article  PubMed  CAS  Google Scholar 

  • Padovani A, Cividalli A, Della Torre A, Galloni L, Mauro F (1987) The effect of step-down heating on murine tumour tissue after fractionated X-ray treatments. Int J Hyperthermia 3: 585–586

    Google Scholar 

  • Peterson HI (1979) Tumor blood flow compared with normal tissue blood flow. In: Peterson HI (ed) Tumor Blood Circulation: Angiogenesis Vascular Morphology and Blood Flow of Experimental and Human Tumors. CRC Press Inc., Boca Raton, Florida, USA, pp 103–114

    Google Scholar 

  • Power JA, Harris JW (1977) Response of extremely hypoxic cells to hyperthermia: Survival and oxygen enhancement ratios. Radiat Biol 123: 767–770

    CAS  Google Scholar 

  • Raaphorst GP (1989) Thermal radiosensitization in vitro. In: Urano M, Douple EB (eds) Hyperthermia and Oncology, vol. 2. VSP, The Netherlands, pp 17–51

    Google Scholar 

  • Raaphorst GP, Azzam EI (1984) A comparative study of heat and/or radiation sensitivity of V79 cells synchronized by three different methods. In: Overgaard J (ed) Hyperthermic Oncology 1984, vol 1. Summary papers. Taylor & Francis, London, pp 301–304

    Google Scholar 

  • Radford IR (1983) Effects of hyperthermia on the repair of X-ray induced DNA double strand breaks in mouse L cells. Int J Radiat Biol 43: 551–557

    Article  CAS  Google Scholar 

  • Reinhold HS (1988) Physiological effects of hyperthermia. In: Issels RD, Wilmanns W (eds) Recent Results in Cancer Research: Application of Hyperthermia in the Treatment of Cancer, vol 107. Springer, Berlin, Heidelberg, New York, Tokyo, pp 32–43

    Google Scholar 

  • Reinhold HS, Blackiewicz B, Berg-Blok A (1978) Decrease in tumor microcirculation during hyperthermia. In: Streffer C, van Beuningen D, Dietzel F (eds) Cancer Therapy by Hyperthermia and Radiation. Urban Schwarzenberg, Baltimore, pp 231— 232

    Google Scholar 

  • Rhee JG, Song CW, Lewitt SH (1984) Thermosensitizing effect of heat-induced vascular damage. In: Overgaard J (ed) Hyperthermic Oncology 1984, vol 1. Summary papers. Taylor & Francis, London, pp 153–156

    Google Scholar 

  • Schreier K, Budihna M, Lesnicar H, HandlZeller L, Hand JW, Prior MV, Clegg ST, Brezovich IA (1990) Preliminary studies of interstitial hyperthermia using hot water. Int J Hyperthermia 6: 431–444

    Article  PubMed  CAS  Google Scholar 

  • Song CW (1984) Effect of local hyperthermia on blood flow and microenvironment: A review. Cancer Res 44: 4721–4730

    Google Scholar 

  • Song CW, Kang MS, Rhee JG, Levitt SH (1980) The effect of hyperthermia on vascular function, pH, and cell survival. Radiology 137: 795–803

    PubMed  CAS  Google Scholar 

  • Song CW, Patten MS, Chelstrom LM, Rhee JG, Levitt SM (1987) Effect of multiple heatings on the blood flow in RIF-1 tumours, skin and muscle of C3H mice. Int J Hyperthermia 3: 535–545

    Article  PubMed  CAS  Google Scholar 

  • Stewart FA, Denekamp J (1977) Sensitization of mouse skin to X-irradiation by moderate heating. Radiology 123: 195–200

    PubMed  CAS  Google Scholar 

  • Stewart FA, Denekamp J (1978) The therapeutic advantage of combined heat and X-rays on a mouse fibrosarcoma. Br J Radiol 51: 307–316

    Article  PubMed  CAS  Google Scholar 

  • Stewart FA, Denekamp J (1980) Fractionation studies with combined X-rays and hyperthermia in vivo. Br J Radiol 53: 346–356

    Article  PubMed  CAS  Google Scholar 

  • Stewart FA, Denekamp J (1982) Loss of therapeutic advantage for combined heat and X-rays with fractionation. NCI mono 61: 291–293

    Google Scholar 

  • Suit HD (1975) Hyperthermia in the treatment of tumours. In: Proceedings of the International Symposium on Cancer Therapy by Hyperthermia and Radiation. April 28–30, American College of Radiology, Washington, pp 107–114

    Google Scholar 

  • Suit HD, Gerweck LE (1979) Potential for hyperthermia and radiation therapy. Cancer Res 39: 2290–2298

    PubMed  CAS  Google Scholar 

  • Thrall DE, Gillette EL, Dewey WC (1975) Effect of heat and ionizing radiation on normal and neoplastic tissue of the C3H mouse. Radiat Res 63: 363–377

    Article  PubMed  CAS  Google Scholar 

  • Urano M, Douple EB (1989) Hyperthermia and Oncology, vol 3, Interstitial Hyperthermia. VSP, The Netherlands

    Google Scholar 

  • Urano M, Gerweck LE, Epstein R, Cunningham M, Suit, HD (1980) Response of a spontaneous murine tumor to hyperthermia: Factors which modify the thermal response in vivo. Radiat Res 83: 312–322

    Article  PubMed  CAS  Google Scholar 

  • Urano M, Maher J, Rice LC, Kahn J (1982) Response of spontaneous murine tumors to hyperthermia: Temperature dependence in two different-sized tumors. NCI mono 61: 299–301

    Google Scholar 

  • Urano M, Montoya V, Booth A (1983) Effect of hyperglycemia on the thermal response of murine normal and tumor tissue. Cancer Res 43: 453–455

    PubMed  CAS  Google Scholar 

  • Vaupel P (1979) Oxygen supply to malignant tumors. In: Peterson HI (ed) Tumor Blood Circulation: Angiogenesis, Vascular Morphology and Blood Flow of Experimental and Human Tumors. CRC Press Inc, Boca Raton, Florida, USA, pp 143–168

    Google Scholar 

  • Vaupel P, Kallinowski F (1987) Physiological effects of hyperthermia. In: Streffer C (ed) Hyperthermia and the Therapy of Malignant Tumors. Springer, Berlin, Heidelberg, New York, Tokyo, pp 71–109

    Chapter  Google Scholar 

  • Vaupel P, Kallinowski F, Okunieff P (1989) Blood flow, oxygen and nutrient supply, and metabolic micro-environment of human tumors: a review. Cancer Res 49: 6449–6465

    PubMed  CAS  Google Scholar 

  • Vaupel P, Müller-Kliesser W, Otte J, Manz R, Kallinowski F (1983) Blood flow, tissue oxygenation, and pH-distribution in malignant tumors upon localized hyperthermia. Basic pathophysiological aspects and the role of various thermal doses. Strahlentherapie 159: 73–81

    PubMed  CAS  Google Scholar 

  • Waldow SM, Dougherty TJ (1984) Interaction of hyperthermia and photoradiation therapy. Radiat Res 97: 380–385

    Article  PubMed  CAS  Google Scholar 

  • Wallen CA, Colby TV, Stewart JR (1986) Cell kill and tumour control after heat treatment with and without vascular occlusion in RIF-1 tumours. Radiat Res 106: 215–223

    Article  PubMed  CAS  Google Scholar 

  • Watanabe N, Niitsu Y, Umeno H, Kuriyama H, Neda H, Yamauchi N, Maeda M, Urushizaki I (1988) Toxic effect of tumor necrosis factor on tumor vasculature in mice. Cancer Res 48: 2179–2183

    PubMed  CAS  Google Scholar 

  • Westra A, Dewey WC (1971) Variation in sensitivity to heat shock during the cell-cycle of Chinese hamster cells in vitro. Int J Radiat Biol 19: 467–477

    Article  CAS  Google Scholar 

  • Wike-Hooley JL, Haveman J, Reinhold HS (1984) The relevance of tumor pH to the treatment of malignant disease. Radiother Oncol 2: 343–366

    Article  PubMed  CAS  Google Scholar 

  • Wondergem J, Haveman J (1984) A study of the effects of prior heat treatment on the skin reaction of mouse feet after heat alone or combined with X-rays: Influence of misonidazole. Radiother Oncol 2: 159–170

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag/Wien

About this chapter

Cite this chapter

Horsman, M.R., Overgaard, J. (1992). Simultaneous and Sequential Treatment with Radiation and Hyperthermia: A Comparative Assessment. In: Handl-Zeller, L. (eds) Interstitial Hyperthermia. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9155-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9155-2_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-9157-6

  • Online ISBN: 978-3-7091-9155-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics