Skip to main content

Guided Optimization for Balanced Locomotion

  • Conference paper
Computer Animation and Simulation ’95

Part of the book series: Eurographics ((EUROGRAPH))

Abstract

Teaching simulated creatures how to walk and run is a challenging problem. As with a baby learning to walk, however, the task of synthesizing the necessary muscle control is simplified if an external hand to assist in maintaining balance is provided. A method of using guiding forces to allow progressive learning of control actions for balanced locomotion is presented. The process has three stages. Stage one involves using a “hand of God” to facilitate balance while the basic actions of a desired motion are learned. Stage two reduces the dependence on external guidance, yielding a more balanced motion. Where possible, a third stage removes the external guidance completely to produce a free, balanced motion. The method is applied to obtain walking motions for a simple biped and a bird-like mechanical creature, as well as walking, running, and skipping motions for a human model of realistic proportions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. I. Badler, B. Barsky, and D. Zeltzer. Making Them Move. Morgan Kaufmann Publishers Inc., 1991.

    Google Scholar 

  2. N. I. Badler, C. B. Phillips, and B. L. Webber. Simulating Humans. Oxford University Press, 1993.

    Google Scholar 

  3. R. Boulic, D. Thalmann. Combined Direct and Inverse Kinematic Control for Articulated Figures Motion Editing. Computer Graphics Forum, 2 (4), 1992, 189–202.

    Article  Google Scholar 

  4. R. Boulic, N. M. Thalmann, D. Thalmann. A global human walking model with real-time kinematic personification. The Visual Computer, 1990, 6, 344–358.

    Article  Google Scholar 

  5. A. Bruderlin and T. W. Calvert. Goal-Directed Dynamic Animation of Human Walking. Proceedings of SIGGRAPH ’89, In ACM Computer Graphics, vol. 23, July 1989, 233–242.

    Article  Google Scholar 

  6. A. Bruderlin and T. W. Calvert. Interactive Animation of Personalized Human Locomotion. In Proceedings of Graphics Interface ’83, 1993, 17–23.

    Google Scholar 

  7. M. F. Cohen. Interactive Spacetime Control for Animation. Proceedings of SIGGRAPH’92. In ACM Computer Graphics, 26, 2 (July 1992), 293–302.

    Article  Google Scholar 

  8. R. Dickstein, Z. Smolinski, and T. Pillar. Self-propelled weight-relieving walker for gait rehabilitation. Journal of Biomedical Engineering, 1992, vol. 14, July, 351–355.

    Article  Google Scholar 

  9. M. Girard. Interactive design of 3-D computer-animated legged animal motion. IEEE Computer Graphics and Applications, June 1987, 39–51.

    Google Scholar 

  10. J. K. Hodgins. Simulation of Human Running. IEEE Conference on Robotics and Automation, 1994, 1320–1325.

    Google Scholar 

  11. J. K. Hodgins, P. K. Sweeney, and D. G. Lawrence. Generating Natural-looking Motion for Computer Animation. Proceedings of Graphics Interface ’82, 265–272, May 1992.

    Google Scholar 

  12. M. G. Hollars, D. E. Rosenthal, and M. A. Sherman. SD/FAST User’s Manual. Symbolic Dynamics Inc., 1991.

    Google Scholar 

  13. V. T. Inman. Human Walking. Williams and Wilkins, 1981.

    Google Scholar 

  14. H. Ko and N. I. Badler. Straight Line Walking Animation Based on Kinematic Generalization that Preserves Original Characteristics. Proceedings of Graphics Interface’93, May 1993, 9–16.

    Google Scholar 

  15. A. Lamouret, M.-P. Gascuel. An approach for guiding colliding physically-based models. 4th Eurographics Workshop on Animation and Simulation, Barcelona, 1993.

    Google Scholar 

  16. Z. Liu, S. J. Gortler, M. Cohen. Hierarchical Spacetime Control, Proceedings of SIGGRAPH ’84. In ACM Computer Graphics Proceedings, 1994, 35–42.

    Google Scholar 

  17. N. Magnenat-Thalmann and D. Thalmann. Computer Animation: Theory and Practice. Springer-Verlag, New York, 1990.

    Google Scholar 

  18. T. McGeer. Passive Dynamic Walking. The International Journal of Robotics Research, 9, 2, 1990, 62–82.

    Article  Google Scholar 

  19. M. McKenna and D. Zeltzer. Dynamic Simulation of Autonomous Legged Locomotion. Proceedings of SIGGRAPH ’80. In ACM Computer Graphics, 22, 4 (August 1990), 29–38.

    Article  Google Scholar 

  20. NASA. The Anthropometry Source Book. NASA reference publication 1024, Johnson Space Center, Houston, 1978.

    Google Scholar 

  21. J. T. Ngo and J. Marks. Spacetime Constraints Revisitied. Proceedings of SIGGRAPH ’83. In ACM Computer Graphics, 27 (August 1993).

    Google Scholar 

  22. M. G. Pandy, F. C. Anderson, and D. G. Hull. A Parameter Optimization. Approach for the Optimal Control of Large-Scale Musculoskeletal Systems. Journal of Biomechanical Engineering, 114 (November 1992), 450–460.

    Article  Google Scholar 

  23. M. H. Raibert. Legged Robots that Balance. MIT Press, Cambridge, 1985.

    Google Scholar 

  24. M. H. Raibert and J. K. Hodgins. Animation of dynamic legged locomotion. Proceedings of SIGGRAPH ’81, In ACM Computer Graphics, 25, 4 (July 1991), 349–358.

    Google Scholar 

  25. K. Sims. Evolving Virtual Creatures. Proceedings of SIGGRAPH `94, In ACM Computer Graphics proceedings, 1994, 15–22.

    Google Scholar 

  26. A. J. Stewart and J. F. Cremer. Beyond Keyframing: An Algorithmic Approach to Animation. In Proceedings of Graphics Interface ’82, 1992, 273–281.

    Google Scholar 

  27. M. van de Panne, E. Fiume, and Z. Vranesic. Reusable Motion Synthesis Using State-Space Controllers. Proceedings of SIGGRAPH ’80, In ACM Computer Graphics, 1990, 24, 4, 225–234.

    Google Scholar 

  28. M. van de Panne and E. Fiume. Sensor-Actuator Networks. Proceedings of SIGGRAPH ’83, In ACM Computer Graphics, August 1993, 335–342.

    Google Scholar 

  29. A. Witkin and M. Kass. Spacetime Constraints. Proceedings of SIGGRAPH ’88. In ACM Computer Graphics, 22, 4 (August 1988), 159–168

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag/Wien

About this paper

Cite this paper

van de Panne, M., Lamouret, A. (1995). Guided Optimization for Balanced Locomotion. In: Terzopoulos, D., Thalmann, D. (eds) Computer Animation and Simulation ’95. Eurographics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-9435-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-9435-5_13

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82738-3

  • Online ISBN: 978-3-7091-9435-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics