Skip to main content

Separation of whole blood cells and its impact on gene expression

  • Chapter
Microarrays in Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Ease of sample collection predestines peripheral blood cells, and their transcriptional or translational products, to become surrogate markers for inflammatory processes in several diseases, including cancer, autoimmune, genetic or metabolic disorders. Therefore, peripheral blood mononuclear cells (PBMCs) and whole blood have been commonly used for genome-wide expression analyses. In comparison to whole blood, which primarily consists of erythrocytes, reticulocytes, platelets, granulocytes, T and B lymphocytes, NK cells and monocytes, PBMCs were pre-enriched for lymphocyte populations, NK cells, and monocytes by density gradient centrifugation, such as Ficoll or Percoll. But the cellular composition of blood shows inter-individual variations and is intensely influenced by pathophysiological processes, such as inflammation. Thus, success in terms of reproducibility and interpretability of a microarray experiment greatly depends on samples being comparable in quality and in quantitative cellular composition.

In this context, some theoretical considerations will be bestowed upon problems arising from samples of heterogeneous composition. To overcome these limitations, cell sorting strategies will be presented that have been optimized with respect to the special requirements necessary for global gene expression studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grant GR, Manduchi E, Pizarro A, Stoeckert CJ,Jr. Maintaining data integrity in microarray data management. Biotechnol Bioeng 2003; 84(7): 795–800

    Article  PubMed  CAS  Google Scholar 

  2. Wilkes T, Laux H, Foy CA. Microarray data quality — review of current developments. OMICS 2007; 11(1): 1–13

    Article  PubMed  CAS  Google Scholar 

  3. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 2001; 29(4): 365–71

    Article  PubMed  CAS  Google Scholar 

  4. Geschwind DH. Sharing gene expression data: an array of options. Nat Rev Neurosci 2001; 2(6): 435–8

    Article  PubMed  CAS  Google Scholar 

  5. Imbeaud S, Auffray C. ‘The 39 steps’ in gene expression profiling: critical issues and proposed best practices for microarray experiments. Drug Discov Today 2005; 10(17): 1175–82

    Article  PubMed  CAS  Google Scholar 

  6. Shi L, Reid LH, Jones WD, Shippy R, Warrington JA, Baker SC et al. The MicroArray Quality Control (MAQC) project shows inter-and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 2006; 24(9): 1151–61

    Article  PubMed  CAS  Google Scholar 

  7. Bakay M, Chen YW, Borup R, Zhao P, Nagaraju K, Hoffman EP. Sources of variability and effect of experimental approach on expression profiling data interpretation. BMC Bioinformatics 2002; 3: 4

    Article  PubMed  Google Scholar 

  8. Spruill SE, Lu J, Hardy S, Weir B. Assessing sources of variability in microarray gene expression data. Biotechniques 2002; 33(4): 916-20

    Google Scholar 

  9. Whitney AR, Diehn M, Popper SJ, Alizadeh AA, Boldrick JC, Relman DA et al.Individuality and variation in gene expression patterns in human blood. Proc Natl Acad Sci USA 2003; 100(4): 1896–901

    Article  PubMed  CAS  Google Scholar 

  10. Debey S, Schoenbeck U, Hellmich M, Gathof BS, Pillai R, Zander T et al. Comparison of different isolation techniques prior gene expression profiling of blood derived cells: impact on physiological responses, on overall expression and the role of different cell types. Pharmacogenomics J 2004; 4(3): 193–207

    Article  PubMed  CAS  Google Scholar 

  11. Goronzy JJ, Weyand CM. Rheumatoid arthritis. Immunol Rev 2005; 204: 55–73

    Article  PubMed  CAS  Google Scholar 

  12. Hoffman, E.P. Expression profiling — best practices for data generation and interpretation in clinical trials. Nat Rev Genet 2004; 5(3): 229–37

    Article  CAS  Google Scholar 

  13. Han ES, Wu Y, McCarter R, Nelson JF, Richardson A, Hilsenbeck SG. Reproducibility, sources of variability, pooling, and sample size: important considerations for the design of high-density oligonucleotide array experiments. J Gerontol A Biol Sci Med Sci 2004; 59(4): 306–15

    PubMed  Google Scholar 

  14. Macgregor S. Most pooling variation in array-based DNA pooling is attributable to array error rather than pool construction error. Eur J Hum Genet 2007; 15(4): 501–4

    Article  PubMed  CAS  Google Scholar 

  15. Viale A, Li J, Tiesman J, Hester S, Massimi A, Griffin C et al. Big results from small samples: evaluation of amplification protocols for gene expression profiling. J Biomol Tech 2007; 18(3): 150–61

    PubMed  Google Scholar 

  16. Lyons PA, Koukoulaki M, Hatton A, Doggett K, Woffendin HB, Chaudhry AN et al. Microarray analysis of human leucocyte subsets: the advantages of positive selection and rapid purification. BMC Genomics 2007; 8: 64

    Article  PubMed  Google Scholar 

  17. Galbraith DW, Elumalai R, Gong FC. Integrative flow cytometric and microarray approaches for use in transcriptional profiling. Methods Mol Biol 2004; 263: 259–80

    PubMed  CAS  Google Scholar 

  18. Szaniszlo P, Wang N, Sinha M, Reece LM, Van Hook JW, Luxon BA et al. Getting the right cells to the array: Gene expression microarray analysis of cell mixtures and sorted cells. Cytometry A 2004; 59(2): 191–202

    Article  PubMed  Google Scholar 

  19. Haeupl T, Gruetzkau A, Gruen J, Radbruch A, Burmetser GR. Expression analysis of rheumatic diseases, prospects and problems. In: Holmdahl R (ed): The Hereditary Basis of Rheumatic Diseases. Basel, Boston, Berlin: Birkhäuser; 2007; 119–30

    Google Scholar 

  20. Mahr S, Burmester GR, Hilke D, Gobel U, Grutzkau A, Haupl T et al.. Cis-and transacting gene regulation is associated with osteoarthritis. Am J Hum Genet 2006; 78(5): 793–803

    Article  PubMed  CAS  Google Scholar 

  21. Sethu P, Moldawer LL, Mindrinos MN, Scumpia PO, Tannahill CL, Wilhelmy J et al. Microfluidic isolation of leukocytes from whole blood for phenotype and gene expression analysis. Anal Chem 2006; 78(15): 5453–61

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Grützkau, A., Radbruch, A. (2008). Separation of whole blood cells and its impact on gene expression. In: Bosio, A., Gerstmayer, B. (eds) Microarrays in Inflammation. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8334-3_3

Download citation

Publish with us

Policies and ethics