Skip to main content

Mathematical Analysis of a Model of River Channel Formation

  • Chapter
  • First Online:
Earth Sciences and Mathematics

Part of the book series: Pageoph Topical Volumes ((PTV))

  • 495 Accesses

Abstract

The study of overland flow of water over an erodible sediment leads to a coupled model describing the evolution of the topographic elevation and the depth of the overland water film. The spatially uniform solution of this model is unstable, and this instability corresponds to the formation of rills, which in reality then grow and coalesce to form large-scale river channels. In this paper we consider the deduction and mathematical analysis of a deterministic model describing river channel formation and the evolution of its depth. The model involves a degenerate nonlinear parabolic equation (satisfied on the interior of the support of the solution) with a super-linear source term and a prescribed constant mass. We propose here a global formulation of the problem (formulated in the whole space, beyond the support of the solution) which allows us to show the existence of a solution and leads to a suitable numerical scheme for its approximation. A particular novelty of the model is that the evolving channel self-determines its own width, without the need to pose any extra conditions at the channel margin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benilan, P. (1978), Operateurs accretifs et semigroups dans les espaces L p, Functional Analysis and Numerical Analysis, France-Japan Seminar (H. Fujita, ed.), Japan Society for the Promotion of Science, Tokio, pp. 15–53.

    Google Scholar 

  • Birnir, B., Smith, T. R., AND Merchant, G. E. (2001), The scaling of fluvial landscapes. Comput. Geosci. 27, 1189–1216.

    Article  Google Scholar 

  • Caffarelli, L. A., Lederman, C., AND Wolanski, N. (1997), Pointwise and viscosity solutions for the limit of a two-phase parabolic singular perturbation problem, Indiana Univ. Math. J. 46(3), 719–740.

    Article  Google Scholar 

  • Caffarelli, L. A. AND Vázquez, J. L. (1995), A free-boundary problem for the heat equation arising inflame propagation, Trans. Amer. Math. Soc. 347(2), 411–441.

    Article  Google Scholar 

  • Díaz, J. I., Fowler, A. C., Muñoz, A. I., and Schiavi, E., Article in preparation.

    Google Scholar 

  • Díaz, J. I., Padial, J. F., AND Rakotoson, J. M. (2007), On some Bernouilli free boundary type problems for general elliptic operators, Proc. Roy. Soc. Edimburgh 137A, 895–911.

    Google Scholar 

  • Díaz, J. I. AND Vrabie, I. (1989), Proprietés de compacitéde l’opérateur de Green généralisépour l’équation des milieux poreux, Comptes Rendus Acad. Sciences, París 309, Série I, 221–223.

    Google Scholar 

  • Evans, L. C. AND Gariepy, R. F., Measure Theory and Fine Properties of Functions (Studies in Advanced Mathematics, CRC Press, Boca Raton, 1992).

    Google Scholar 

  • Fowler, A. C., Kopteva, N., AND Oakley, C. (2007), The formation of river channels, SIAM J. Appl. Math. 67, 1016–1040.

    Article  Google Scholar 

  • Howard, A. D. (1994), A detachment-limited model of drainage basin evolution, Water Resour. Res. 30, 2261–2285.

    Article  Google Scholar 

  • Izumi, N. AND Parker, G. (1995), Inception and channellization and drainage basin formation: Upstream-driven theory, J. Fluid Mech. 283, 341–363.

    Article  Google Scholar 

  • Izumi, N. AND Parker, G. (2000), Linear stability analysis of channel inception: Downstream-driven theory, J. Fluid Mech. 419, 239–262.

    Article  Google Scholar 

  • Kalashnikov, A. S. (1987), Some problems of the qualitative theory of second-order nonlinear degenerate parabolic equations, Uspekhi Mat. Nauk 42, 135–176.

    Google Scholar 

  • Kramer, S. AND Marder, M. (1992), Evolution of river networks, Phys. Rev. Lett. 68, 205–208.

    Article  Google Scholar 

  • Loewenherz, D. S. (1991), Stability and the initiation of channelized surface drainage: A reassessment of the short wavelength limit, J. Geophys. Res. 96, 8453–8464.

    Article  Google Scholar 

  • Loewenherz-Lawrence, D. S. (1994), Hydrodynamic description for advective sediment transport processes and rill initiation, Water Resour. Res. 30, 3203–3212.

    Article  Google Scholar 

  • Nazaret, B. (2001), Heat flow for extremal functions in some subcritical Sobolev inequalities, Appl. Anal. 80, 95–105.

    Article  Google Scholar 

  • Meyer-Peter, E. AND Müller, R. (1948), Formulas for bed-load transport, Proc. Int. Assoc. Hydraul. Res., 3rd Annual Conference, Stockholm, 39–64.

    Google Scholar 

  • Parker, G. (1978), Self-formed straight rivers with equilibrium banks and mobile bed, Part 1. The sand-silt river, J. Fluid Mech. 89, 109–125.

    Article  Google Scholar 

  • Samarski, A. A., Galaktionov, V. A., Kurdyumov, S. P., AND Mikhailov, A. P., Blow-up in quasilinear parabolic equations (Walter de Gruyter, Berlin, 1995).

    Google Scholar 

  • Smith, T. R., Birnir, B., AND Merchant, G. E. (1997), Towards an elementary theory of drainage basin evolution: II. A computational evaluation, Comput. Geosci. 23, 823–849.

    Article  Google Scholar 

  • Smith, T. R. AND Bretherton, F. P. (1972), Stability and the conservation of mass in drainage basin evolution, Water Resour. Res. 8, 11, 1506–1529.

    Article  Google Scholar 

  • Tucker, G. E. AND Slingerland, R. L. (1994), Erosional dynamics, flexural isostasy, and long-lived escarpments: A numerical modeling study, J. Geophys. Res. 99, 12.229–12.243.

    Article  Google Scholar 

  • Vrabie, I. I., Compactness Methods for Nonlinear Evolutions (Pitman Longman, London, 1987).

    Google Scholar 

  • Willgoose, G., Bras, R. L., AND Rodríguez-Iturbe, I. (1991), A coupled channel network growth and hillslope evolution model: I. Theory, Water Resour. Res. 27, 1671–1684.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag, Basel

About this chapter

Cite this chapter

Díaz, J.I., Fowler, A.C., Muñoz, A.I., Schiavi, E. (2008). Mathematical Analysis of a Model of River Channel Formation. In: Camacho, A.G., Díaz, J.I., Fernändez, J. (eds) Earth Sciences and Mathematics. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-9964-1_11

Download citation

Publish with us

Policies and ethics