Skip to main content

Steps Towards One-Shot Vision-Based Self-Localization

  • Chapter
Biologically Inspired Robot Behavior Engineering

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 109))

Summary

Approaches to the problem of self-localization are based on odometry (dead-reckoning) and the matching of feature vectors obtained from sensor readings, captured at selected positions and orientations (landmarks) during map construction. Due to the big uncertainties of sensor inputs, the matching of their readings is taken as a correction for odometry-based self-localization. Vision-based self-localization is based on the recognition of landmarks or the matching of 3D information extracted from the images. Such approaches are computationally expensive. We propose the use of Heteroassociative Morphological Memories for the fast recognition of views that can be used in a one-shot recognition procedure, inspired in the instantaneous recognition of specific views of an environment where an autonomous agent tries to obtain orientation. Recognition of world views provide inmediate confirmation or refutation of the position hypithesis that other senses or the dead-reckoning procedures may sustain. The present status of our work addresses the problem of significative shot identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balkenius, C. and L. Kopp. Robust self-localization using elastic templates. In T. Lindberg (ed.), Proceedings of Swedish Symposium on Image Analysis, 1997

    Google ScholarĀ 

  2. Brooks, R. A. Achieving artificial intelligence through building robots. AI MEMO 899, AI Lab, MIT, 1986

    Google ScholarĀ 

  3. Brooks, R. A. Intelligence without reason. Proc. of International Joint Conference on Artificial Intelligence, pp. not available, Sydney, Australia, 1991

    Google ScholarĀ 

  4. Brooks, R. A. Intelligence without representation. Artificial Intelligence Journal, 47: 139ā€“159, 1991

    ArticleĀ  Google ScholarĀ 

  5. Chatila, R. Deliberation and reactivity in autonomous mobile robots. Robotics and Autonomous Systems, 16: 197ā€“211, 1995

    ArticleĀ  Google ScholarĀ 

  6. Colios, C. I. and P. E. Trahanias. A framework for visual landmark identification based on projective and point-permutation invariant vectors. Robotics and Autonomous Systems, 35: 37ā€“51, 2001

    ArticleĀ  MATHĀ  Google ScholarĀ 

  7. Connell, J. H. SSS:A hybrid architecture applied to robot navigation. Proc. of IEEE Conference on Robotics and Automation, pp. 2719ā€“1724, 1992

    Google ScholarĀ 

  8. Crowley, J. L. Navigation for an intelligent mobile robot.. IEEE Journal of Robotics and Automation, pp. 31ā€“41, 1985

    Google ScholarĀ 

  9. Crowley, J. L. Mathematical foundation of navigation and perception for an autonomous mobile robot. In L. Dorst (ed.), Reasoning with Uncertainty in Robotics, Springer-Verlag, 1996

    Google ScholarĀ 

  10. Fox, D. Markov Localization: A Probabilistic Framework for Mobile Robot Localization and Navigdation. Ph. D. Thesis, University of Bonn, Germany, December 1998

    Google ScholarĀ 

  11. Franz, M. O., B. Schƶlkopf, H. A. Mallot and H. H. BĆ¼lthoff. Where did I take this snapshot? Scene-based homing by image matching. Biological Cybernetics, 79: 191ā€“202, 1998

    ArticleĀ  MATHĀ  Google ScholarĀ 

  12. Gader, P.D., M. A. Khabou, and A. Koldobsky. Morphological regularization neural networks. Pattern Recognition, 33: 935ā€“944, 2000

    ArticleĀ  Google ScholarĀ 

  13. Giralt G., R. Chatila and M. Vaisset. An integrated navigation and motion control system for autonomous multisensory mobile robots. Robotics Research, Brady and Paul (eds.), MIT PRESS, pp. 191-214, 1984

    Google ScholarĀ 

  14. Gomi, T. Non-Cartesian robotics. Robotics and Autonomous Systems, 18: 169184, 1996

    Google ScholarĀ 

  15. Gomi, T. and K. Ide. Emulation of emotion using vision with learning. Proc. of International Conference on Intelligent Robots and Systems, pp. not available, Munich, Germany, 1994

    Google ScholarĀ 

  16. Jackway, P. T and M. Deriche. Scale-space properties of the multiscale morphological dilation-erosion. IEEE Trans. on Pattern Recognition and Machine Intelligence, 18 (1): 38ā€“51, 1996

    ArticleĀ  Google ScholarĀ 

  17. Livatino, S. and C. Madsen. Optimization of robot self-localization accuracy by automatic visual-landmark selection. Proceedings of 11th Scabdinavian Conference on Image Analysis (SCIA), pp. 501ā€“506, 1999

    Google ScholarĀ 

  18. Mondada, F., E. Franzi and P. Ienne. Mobile robot miniaturization: A tool for investigation in control algorithms. Proc. of Third International Symposium on Experimental Robotics, pp. not available, Kyoto, Japan, 1993

    Google ScholarĀ 

  19. Olson, C. F. Mobile Robot self-localization by iconic matching of range maps. Proceedings of the 8th International Conference on Advanced Robotics (ICAR), pp. 447ā€“452, 1997

    Google ScholarĀ 

  20. Pessoa, L. F. C. and P. Maragos. Neural networks with hybrid morphological/rank /linear nodes: A unifying framework with applications to handwritten character recognition. Pattern Recognition, 33: 945ā€“960, 2000

    ArticleĀ  Google ScholarĀ 

  21. Reuter, J. Mobile robot self-localization using PDAB. Proceedings of International Conference on Robotics and Automation (ICRA), pp. not available, 2000

    Google ScholarĀ 

  22. Ritter, G. X., P. Sussner and J.L. Diaz de Leon. Morphological Associative Memories. IEEE Transactions on Neural Networks, 9 (2): 281ā€“292, 1998

    ArticleĀ  Google ScholarĀ 

  23. Ritter, G. X. and P. Sussner. An introduction to Morphological Neural Networks. Proc. of Intl Conference on Pattern Recognition, pp. 709ā€“717, 1996

    Google ScholarĀ 

  24. Ritter, G. X., J. L. Diaz-de-Leon and P. Sussner. Morphological Bidirectional Associative Memories. Neural Networks, 12: 851ā€“867, 1999

    ArticleĀ  Google ScholarĀ 

  25. Safiiotti, A. and L. P. Wesley. Perception-based self-localization using fuzzy location. In L. Dorst, M. Van Lambalgen and F. Voorbraak (eds.), Lecture Notes in Artificial Intelligence 1093, Springer-Verlag, pp. 368ā€“385, 1996

    Google ScholarĀ 

  26. Steels, L. Building agents out of autonomous behavior systems. The Biology and Technology of Intelligent Autonomous Agents, NATO Advanced Study Institute, Lecture Notes, Trento, 1993

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raducanu, B., Sussner, P., GraƱa, M. (2003). Steps Towards One-Shot Vision-Based Self-Localization. In: Duro, R.J., Santos, J., GraƱa, M. (eds) Biologically Inspired Robot Behavior Engineering. Studies in Fuzziness and Soft Computing, vol 109. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1775-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1775-1_13

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-2517-6

  • Online ISBN: 978-3-7908-1775-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics