Skip to main content

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 96))

Abstract

Clinical information systems can record numerous variables describing the patient’s state at high sampling frequencies. Intelligent alarm systems and suitable bedside decision support are needed to cope with this flood of information. A basic task here is the fast and correct detection of important patterns of change such as level shifts and trends in the data. We present approaches for automated pattern detection in online-monitoring data. Several methods based on curve fitting and statistical time series analysis are described. Median filtering can be used as a preliminary step to reduce the noise and to remove clinically irrelevant short term fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mäkivirta, A. (1989), “Towards Reliable and Intelligent Alarms by Using Median Filters,” Research Report 660, Technical Research Centre of Finland.

    Google Scholar 

  2. Morris, A. and Gardner, R. (1992), “Computer applications,” in: Hall, J., Schmidt, G., and Wood, L. (Eds.), Principles of Critical Care, McGraw Hill, New York, pp. 500–514.

    Google Scholar 

  3. Miller, G. (1956), “The marginal number seven, plus or minus two: some limits to our capacity for processing information,” Psychol. Rev., vol. 63, pp. 81–97.

    Article  PubMed  CAS  Google Scholar 

  4. Jennings, D., Amabile, T., and Ross, L. (1982), “Informal covariation asessments: data-based versus theory-based judgements,” in: Kahnemann, D., Slovic, P., and Tversky, A. (eds.), Judgment under Uncertainty: Heuristics and Biases, Cambridge University Press, Cambridge, pp. 211–230.

    Chapter  Google Scholar 

  5. Guyatt, G., Drummond, M., Feeny, D., Tugwell, P., Stoddart, G., Haynes, R., Bennett, K., and LaBelle, R. (1986), “Guidelines for the clinical and economic evaluation of health care technologies,” Soc. Sci. Med., vol. 22, pp. 393–408.

    Article  PubMed  CAS  Google Scholar 

  6. Morris, A. (1998), “Algorithm-based decision making,” in: Tobin, J.A. (Ed.), Principles and practice of intensive care monitoring, McGraw Hill, New York, pp. 1355–1381.

    Google Scholar 

  7. Lawless, S.T. (1994), “Crying wolf: false alarms in a pediatric intensive care unit,” Critical Care Medicine, vol. 22, pp. 981–985.

    Article  PubMed  CAS  Google Scholar 

  8. Wiklund, L., Hök, B., Stähl, K., and Jordeby-Jönsson, A. (1994), “Postanaesthesia monitoring revisited: frequency of true and false alarms from different monitoring devices,” J. Clin. Anesth., vol. 6, pp. 182–188.

    Article  PubMed  CAS  Google Scholar 

  9. O’Carrol, T. (1986), “Survey of alarms in an intensive therapy unit,” Anesthesia, vol. 41, pp. 742–744.

    Article  Google Scholar 

  10. Haimowitz, I.J., Le, P.P., and Kohane, I.S. (1995), “Clinical monitoring using regression-based trend templates,”Art. Intel. Med., vol. 7, pp. 473–496.

    Google Scholar 

  11. Haimowitz, I.J. and Kohane, I.S. (1996), “Managing temporal worlds for medical trend diagnosis,” Art. Intel. Med., vol. 8, pp. 299–321.

    Article  CAS  Google Scholar 

  12. Miksch, S., Horn, W., Popow, C., and Paky, F. (1996), “Utilizing temporal data abstraction for data validation and therapy planning for artificially ventilated newborn infants,” Art. Intel. Med., vol. 8, pp. 543–576.

    Article  CAS  Google Scholar 

  13. Smith, A.F.M. and West, M. (1983), “Monitoring renal transplants: an application of the multiprocess Kalman filter,” Biometrics, vol. 39, pp. 867–878.

    Article  PubMed  CAS  Google Scholar 

  14. Gather, U., Fried, R., Lanius, V., and Imhoff, M. (2001), “Online monitoring of high-dimensional physiological time series — a case-study,” Estadistica. (To appear.)

    Google Scholar 

  15. Shahar, Y. and Musen, M.A. (1993), “RESUME: a temporal-abstraction system for patient monitoring,” Computers and Biomedical Research, vol. 26, pp. 255–273.

    Article  PubMed  CAS  Google Scholar 

  16. Shahar, Y. and Musen, M.A. (1996), “Knowledge-based temporal abstraction in clinical domains,” Art. Intel. Med., vol. 8, pp. 267298.

    Google Scholar 

  17. Mäkivirta, A., Koski, E., Kari, A., and Sukuvaara, T. (1991), “The median filter as a preprocessor for a patient monitor limit alarm system in intensive care,” Computer Methods and Programs in Medicine, vol. 34, pp. 134–149.

    Google Scholar 

  18. Justusson, B.I. (1978), “Noise reduction by median filtering,” Pro. 4th Int. Joint Conf Pattern recognition, Kyoto, Japan, Nov. 1978, pp. 502–504.

    Google Scholar 

  19. Justusson, B.I. (1981), “Median filtering: statistical properties,” in: Huang, T.S. (Ed.), Topics in Applied Physics, Two-Dimensional Signal Processing II, Springer-Verlag, Berlin.

    Google Scholar 

  20. Nieminen, A., Neuvo, Y., and Mitra, U. (1988), “Algorithms for real-time trend detection,” ICASSP International Conference on Acoust., Speech and Signal Proc. 1988, IEEE, New York, pp. 1530–1532.

    Chapter  Google Scholar 

  21. Nieminen, A., Neuvo, Y., and Mitra, U. (1989), “Algorithms for real-time trend detection,” Signal processing, vol. 18, pp. 1–15.

    Article  Google Scholar 

  22. Endresen, J. and Hill, D.W. (1977), “The present state of trend detection and prediction in patient monitoring,” Intensive Care Medicine, vol. 3, pp. 15–26.

    Article  PubMed  CAS  Google Scholar 

  23. Woodward, W.A. and Gray, H.L. (1993), “Global warming and the problem of testing for trend in time series data, ” Journal of Climate, vol. 6, pp. 953–962.

    Article  Google Scholar 

  24. Hill, D.W. and Endresen, J. (1978), “Trend recording and forecasting in intensive care therapy,” British Journal of Clinical Equipment, January, pp. 5–14.

    Google Scholar 

  25. Imhoff, M. and Bauer, M. (1996), “Time series analysis in critical care monitoring,” New Horizons, vol. 4, pp. 519–531.

    PubMed  CAS  Google Scholar 

  26. Gordon, K. and Smith, A.S.M. (1990), “Modeling and monitoring biomedical time series,” J Americ. Statist. Assoc., vol. 85, pp. 328337.

    Google Scholar 

  27. Hepworth, J.T., Handrickson, S.G., and Lopez, J. (1994), “Time series analysis of physiological response during ICU visitation,” West J. Nurs. Res., vol. 16, pp. 704–717.

    Article  PubMed  CAS  Google Scholar 

  28. Imhoff, M., Bauer, M., Gather, U., and Löhlein, D. (1998), “Statistical pattern detection in univariate time series of intensive care online monitoring data,” Intensive Care Medicine, vol. 24, pp. 13051314.

    Google Scholar 

  29. Bauer, M., Gather, U., and Imhoff, M. (1999), “The Identification of Multiple Outliers in Online Monitoring Data,” Technical Report 29/1999, SFB 475, Department of Statistics, University of Dortmund, Germany.

    Google Scholar 

  30. Brockwell, P.J. and Davis, R.A. (1987), Time Series: Theory and Methods, 2nd ed., Springer, New York.

    Book  Google Scholar 

  31. Box, G.E.P., Jenkins, G.M., and Reinsel, G.C. (1994), Time Series Analysis. Forecasting and Control, 3rd ed., Prentice-Hall, Englewood Cliffs.

    Google Scholar 

  32. Fox, A.J. (1972), “Outliers in time series,” J Roy. Statist. Soc. Ser. B, vol. 34, pp. 350–363.

    Google Scholar 

  33. Chang, I., Tiao, G.C., and Chen, C. (1988), “Estimation of time series parameters in the presence of outliers,” Technometrics, vol. 30, pp. 193–204.

    Article  Google Scholar 

  34. Tsay, R.S. (1988), “Outliers, level shifts and variance changes in time series,” J Forecasting, vol. 7, pp. 1–20.

    Article  Google Scholar 

  35. Chen, C., and Liu, L. (1993), “Joint estimation of model parameters and outlier effects in time series,” J Am. Stat. Assoc., vol. 88, pp. 284–297.

    Google Scholar 

  36. Pena, D., Tiao, G.C., and Tsay, R.S. (2000), A Course in Time Series Analysis, Wiley, New York.

    Book  Google Scholar 

  37. Muirhead, C.R. (1986), “Distinguishing outlier types in time series,” J. R. Statist. Soc. Ser. B, vol. 48, pp. 39–47.

    Google Scholar 

  38. Ljung, G.M. (1993), “On outlier detection in time series,” J. Roy. Stat. Soc. B, vol. 55, pp. 559–567.

    Google Scholar 

  39. Imhoff, M., Bauer, M., Gather, U., and Löhlein, D. (1997), “Time series analysis in intensive care medicine,” Applied Cardiopulmonary Pathophysiology, vol. 6, pp. 263–281.

    Google Scholar 

  40. Johnson, R.A. and Bagshaw, M. (1974), “The effects of serial correlation on the performance of the CUSUM tests,” Technometrics, vol. 16, pp. 103–122.

    Article  Google Scholar 

  41. Padgett, C.S., Thombs, L.A., and Padgett, W.J. (1992), “On the a-risks for Shewhart control charts,” Communications in Statistics–Simulation and Computation, vol. 21, pp. 1125–1147.

    Article  Google Scholar 

  42. Lu, C.-W. and Reynolds, M.R. Jr. (1999), “EWMA control charts for monitoring the mean of autocorrelated processes,” Journal of Quality Technology, vol. 31, pp. 166–187.

    Google Scholar 

  43. Kramer, H. and Schmid, W. (2000), “The influence of parameter estimation on the ARL of Shewhart type charts for time series,” Statistical Papers, vol. 41, pp. 173–196.

    Article  Google Scholar 

  44. Tseng, S. and Adams, B.M. (1994), “Monitoring autocorrelated processes with an exponentially weighted moving average forecast,” J. Statist. Comp. Simul., vol. 50, pp. 187–195.

    Article  Google Scholar 

  45. Adams, B.M. and Tseng, I.-T. (1998), “Robustness of forecast-based monitoring schemes,” Journal of Quality Technology, vol. 30, pp. 328–339.

    Google Scholar 

  46. Runger, G.C. and Willeman, T.R. (1995), “Model-based and model-free control of autocorrelated processes,” Journal of Quality Technology, vol. 27, pp. 283–292.

    Google Scholar 

  47. Hembree, G.B. (1994), “Recursive estimation of the weighting factor for EWMA control charts from autocorrelated data,” ASAProQIPr, 39–43.

    Google Scholar 

  48. Lin, W.S.W. and Adams, B.M. (1996), “Combined control charts for forecast-based monitoring schemes,” Journal of Quality Technology, vol. 28, pp. 289–301.

    Google Scholar 

  49. Zhang, N.F. (1998), “A statistical control chart for stationary process data,” Technometrics, vol. 40, pp. 24–38.

    Article  Google Scholar 

  50. Montgomery, D.C. and Mastrangelo, C.M. (1991), “Some statistical process control methods for autocorrelated data,” Journal of Quality Technology, vol. 23, pp. 179–193.

    Google Scholar 

  51. Timmer, D.H., Pignatiello, J. Jr., and Longnecker, M. (1998), “The development and evaluation of CUSUM-based control charts for an AR(1) process,” IEEE Transactions, vol. 30, pp. 525–534.

    Google Scholar 

  52. Lambert, C.R., Raymenants, E., and Pepine, C.J. (1995), “Time-series analysis of long-term ambulatory myocardial ischemia: effects of beta-adrenergic and calcium channel blockade,” Am. Heart J, vol. 129, pp. 677–684.

    Article  PubMed  CAS  Google Scholar 

  53. Schack, B. and Grieszbach, G. (1994), “Adaptive methods of trend detection and their applications in analysing biosignals,” Biometrical Journal, vol. 36, pp. 429–452.

    Article  Google Scholar 

  54. Trigg, D.W. (1964), “Monitoring a forecasting system,” Operational Research Quarterly, vol. 15, pp. 271–274.

    Article  Google Scholar 

  55. Gardner, E.S. (1983), “Automatic monitoring of forecast errors,” Journal of Forecasting, vol. 2, pp. 1–21.

    Article  Google Scholar 

  56. Kennedy, R.R. (1995), “A modified Trigg’s tracking variable as an `advisory alarm’ during anaesthesia,” International Journal of Clinical Monitoring and Computing, vol. 12, pp. 197–204.

    Article  PubMed  CAS  Google Scholar 

  57. Stoodley, K.D.C. and Mirnia, M. (1979), “The automatic detection of transients, step changes and slope changes in the monitoring of medical time series,” The Statistician, vol. 28, pp. 163–170.

    Article  Google Scholar 

  58. Högel, J. (2000), “Applications of statistical process control techniques in medical fields,” Allg. Stat. Archiv, vol. 84, pp. 337–359.

    Article  Google Scholar 

  59. West, M. and Harrison, J. (1989), Bayesian Forecasting and Dynamic Models, Springer, New York.

    Book  Google Scholar 

  60. Wasserman, G.S. and Sudjianto, A. (1993), “Short run SPC based upon the second order dynamic linear model for trend detection,” Communications in Statistics–Computation and Simulation, vol. 22, 1011–1036.

    Article  Google Scholar 

  61. Pena, D. (1990), “Influential observations in time series,” I Business & Economic Statistics, vol. 8, pp. 235–241.

    Google Scholar 

  62. De Jong, P., and Penzer, J. (1998), “Diagnosing shocks in time series,” J. Americ. Statist. Assoc., vol. 93, pp. 796–806.

    Article  Google Scholar 

  63. Gather, U., Fried, R., and Imhoff, M. (2000), “Online classification of states in intensive care,” in: Gaul, W., Opitz, O., and Schader, M. (Eds.), Festschrift in Honor to Hans-Hermann Bock’s 60th Birthday, Data Analysis, Classification, and Applications, Springer, Berlin, pp. 413–428.

    Google Scholar 

  64. Becker, C. and Gather, U. (2000), “The masking breakdown point of multivariate outlier identification rules,” I Americ. Statist. Assoc., vol. 94, pp. 947–955.

    Article  Google Scholar 

  65. Fried, R., Gather, U., and Imhoff, M. (2001), “The online detection of a monotone trend in a time series,” Preprint, Department of Statistics, University of Dortmund, Germany.

    Google Scholar 

  66. Abelson, R.P. and Tukey, J.W. (1963), “Efficient utilization of non-numerical information in quantitative analysis: general theory and the case of simple order,” Ann. Math. Statist., vol. 34, pp. 13471369.

    Google Scholar 

  67. Brillinger, D.R. (1989), “Consistent detection of a monotonic trend superposed by a stationary time series,” Biometrika, vol. 76, pp. 23–30.

    Article  Google Scholar 

  68. Härdle, W. (1990), Applied Nonparametric Regression, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  69. Morik, K., Imhoff, M., Brockhausen, P., Joachims, T., and Gather, U. (2000), “Knowledge discovery and knowledge validation in intensive care,” Art. Int. Med., vol. 19, pp. 225–249.

    Article  CAS  Google Scholar 

  70. Friedmann, J.H. (1994), “An overview of predictive learning and function approximation,” in: Cherkassky, V., Friedmann, J.H., and Wechsler, H. (Eds.), From Statistics to Neural Networks, Springer, Berlin et al., pp. 1–61.

    Chapter  Google Scholar 

  71. Fried, R., Gather, U., and Imhoff, M. (2000), “Some statistical methods in intensive care online monitoring — a review,” in: Brause, R.W. and Hanisch, E. (Eds.), Medical Data Analysis, Springer, Berlin, pp. 67–77.

    Chapter  Google Scholar 

  72. Gather, U., Imhoff, M., and Fried, R. (2000), “Graphical Models for Multivariate Time Series from Intensive Care Monitoring,” Technical Report 33/2000, SFB 475, University of Dortmund, 44221 Dortmund, Germany.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fried, R., Gather, U., Imhoff, M. (2002). Pattern Recognition in Intensive Care Online Monitoring. In: Schmitt, M., Teodorescu, HN., Jain, A., Jain, A., Jain, S., Jain, L.C. (eds) Computational Intelligence Processing in Medical Diagnosis. Studies in Fuzziness and Soft Computing, vol 96. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1788-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1788-1_6

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-7908-2509-1

  • Online ISBN: 978-3-7908-1788-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics