Skip to main content

A New Direction in AI Toward a Computational Theory of Perceptions

  • Chapter
Technologies for Constructing Intelligent Systems 1

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 89))

Abstract

Humans have a remarkable capability to perform a wide variety of physical and mental tasks without any measurements and any computations. Familiar examples are parking a car, driving in city traffic, playing golf, cooking a meal, and summarizing a story. In performing such tasks, humans use perceptions of time, direction, speed, shape, possibility, likelihood, truth, and other attributes of physical and mental objects. Reflecting the bounded ability of the human brain to resolve detail, perceptions are intrinsically imprecise. In more concrete terms, perceptions are f-granular, meaning that (1) the boundaries of perceived classes are unsharp and (2) the values of attributes are granulated, with a granule being a clump of values (points, objects) drawn together by indistinguishability, similarity, proximity, and function. For example, the granules of age might be labeled very young, young, middle aged, old, very old, and so on.

F-granularity of perceptions puts them well beyond the reach of traditional methods of analysis based on predicate logic or probability theory. The computational theory of perceptions (CTP), which is outlined in this article, adds to the armamentarium of AI a capability to compute and reason with perception-based information. The point of departure in CTP is the assumption that perceptions are described by propositions drawn from a natural language; for example, it is unlikely that there will be a significant increase in the price of oil in the near future.

In CTP, a proposition, p, is viewed as an answer to a question, and the meaning of p is represented as a generalized constraint. To compute with perceptions, their descriptors are translated into what is called the generalized constraint language (GCL). Then, goal-directed constraint propagation is utilized to answer a given query. A concept that plays a key role in CTP is that of precisiated natural language (PNL).

The computational theory of perceptions suggests a new direction in AI—a direction that might enhance the ability of AI to deal with real-world problems in which decision-relevant information is a mixture of measurements and perceptions. What is not widely recognized is that many important problems in AI fall into this category.

This paper is a reproduction of:

Lotfi A. Zadeh, “A new Direction in AI: Toward a Computational Theory of Perceptions,” ©2001, American Association for Artificial Intelligence. Reproduced with permission of the publisher and author from AI Magazine 22(1):73–84, Spring 2001.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Barsalou, L. W. 1999. Perceptual Symbol Systems. Behavioral and Brain Sciences 22: 577–660

    Google Scholar 

  • Davis, E. 1990 Representations of Commonsense Knowledge. San Francisco, Calif.: Morgan Kaufmann

    Google Scholar 

  • Davis, E. 1987. Constraint Propagation with Interval Labels. Artificial Intelligence 32 (3): 281–331.

    Article  MathSciNet  MATH  Google Scholar 

  • de Kleer, J., and Bobrow, D. G. 1984. Qualitative Reasoning with Higher-Order Derivatives. In Proceedings of the Fourth National Conference on Artificial Intelligence. Menlo Park, Calif.: American Association for Artificial Intelligence

    Google Scholar 

  • Dubois, D., and Prade, H. 1996. Approximate andCommonsense Reasoning: From Theory to Practice. In Proceedings of the Foundations of Intelligent Systems, Ninth International Symposium,19–33. Berlin: Springer-Verlag

    Google Scholar 

  • Dubois, D.; Fargier, H.; and Prade, H. 1994. Propagation and Satisfaction of Flexible Constraints. In Fuzzy Sets, Neural Networks, and Soft Computing, eds. R. R. Yager and L. A. Zadeh, 166–187. New York: Von Nostrand Reinhold.

    Google Scholar 

  • Forbus, K. D. 1984. Qualitative Process Theory. Artificial Intelligence 24 (1): 85–168.

    Article  Google Scholar 

  • Geng, J. Z. 1995. Fuzzy CMAC Neural Networks. Journal of Intelligent and Fuzzy Systems 3 (1): 87–102.

    Google Scholar 

  • Kaufmann A., and Gupta, M. M. 1985. Introduction to Fuzzy Arithmetic: Theory and Applications. New York: Von Nostrand.

    MATH  Google Scholar 

  • Kuipers, B. J. 1984. Qualitative Reasoning. Cambridge, Mass.: MIT Press.

    Google Scholar 

  • Lano, K. 1991. A Constraint-Based Fuzzy Inference System. In Proceedings of EPIA 91, Fifth Portuguese Conference on Artificial Intelligence, eds. P. Barahona, L. M. Pereira, and A. Porto, 45–59. Berlin: Springer-Verlag.

    Google Scholar 

  • Lenat, D. B. 1995. cyc: A Large-Scale Investment in Knowledge Infrastructure Communications of the ACM 38(11): 32–38

    Google Scholar 

  • McCarthy, J. 1990. Formalizing Common Sense, eds. V. Lifschitz and J. McCarthy. Norwood, N.J.: Ablex.

    Google Scholar 

  • McCarthy, J., and Hayes, P. J. 1969. Some Philosophical Problems from the Standpoint of Artificial Intelligence. In Machine Intelligence 4, eds. B. Meltzer and D. Michie, 463–502. Edinburgh: Edinburgh University Press.

    Google Scholar 

  • Mani, I., and Maybury, M. T., eds. 1999. Advances in Automatic Text Summarization. Cambridge, Mass.: MIT Press.

    Google Scholar 

  • Mavrovouniotis, M. L., and Stephanopoulos, G. 1987. Reasoning with Orders of Magnitude and Approximate Relations. In Proceedings of the Sixth National Conference on Artificial Intelligence, 626–630. Menlo Park, Calif.: American Association for Artificial Intelligence.

    Google Scholar 

  • Novak, V. 1991. Fuzzy Logic, Fuzzy Sets, and Natural Languages. International Journal of General Systems 20 (1): 83–97.

    Article  MATH  Google Scholar 

  • Pedrycz, W., and Gomide, F. 1998. Introduction to Fuzzy Sets. Cambridge, Mass.: MIT Press.

    MATH  Google Scholar 

  • Raiman, 0. 1991. Order of Magnitude Reasoning. Artificial Intelligence 51 (1): 11–38.

    Article  Google Scholar 

  • Sandewall, E. 1989. Combining Logic and Differential Equations for Describing Real-World Systems. In Proceedings of the First International Conference on Principles of Knowledge Representation and Reasoning, 412–420. San Francisco, Calif.: Morgan Kaufmann

    Google Scholar 

  • Shafer, G. 1976. A Mathematical Theory of Evidence. Princeton, N.J.: Princeton University Press

    Google Scholar 

  • Struss, P. 1990. Problems of Interval-Based Qualitative Reasoning. In Qualitative Reasoning about Physical Systems, eds. D. Weld and J. de Kleer, 288–305. San Francisco, Calif.: Morgan Kaufmann

    Google Scholar 

  • Sun, R. 1994. Integrating Rules and Connectionism for Robust Commonsense Reasoning. New York: Wiley.

    MATH  Google Scholar 

  • Vallee, R. 1995. Cognition et Systeme (Cognition and Systems). Paris: l’Interdisciplinaire Systeme(s)

    Google Scholar 

  • Zadeh, L. A. 1999. From Computing with Numbers to Computing with Words-From Manipulation of Measurements to Manipulation of PerceptionsIEEE Transactions on Circuits and Systems 45(1): 105–119

    MathSciNet  Google Scholar 

  • Zadeh, L. A. 1997. Toward a Theory of Fuzzy Information Granulation and Its Centrality in Human Reasoning and Fuzzy Logic. Fuzzy Sets and Systems 90: 111–127.

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh, L. A. 1986. Outline of a Computational Approach to Meaning and Knowledge Representation Based on the Concept of a Generalized Assignment Statement. In Proceedings of the International Seminar on Artificial Intelligence and Man-Machine Systems, eds. M. Thoma and A. Wyner, 198–211. Heidelberg: Springer-Verlag

    Google Scholar 

  • Zadeh, L. A. 1973. Outline of a New Approach to the Analysis of Complex System and Decision Processes. IEEE Transactions on Systems, Man, and Cybernetics SMC-3(1): 28–44.

    Article  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zadeh, L.A. (2002). A New Direction in AI Toward a Computational Theory of Perceptions. In: Bouchon-Meunier, B., Gutiérrez-Ríos, J., Magdalena, L., Yager, R.R. (eds) Technologies for Constructing Intelligent Systems 1. Studies in Fuzziness and Soft Computing, vol 89. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-1797-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7908-1797-3_1

  • Publisher Name: Physica, Heidelberg

  • Print ISBN: 978-3-662-00329-9

  • Online ISBN: 978-3-7908-1797-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics