Skip to main content

Asymptotic Properties of Some Non-Parametric Hyperbolic Efficiency Estimators

  • Chapter
  • First Online:
Exploring Research Frontiers in Contemporary Statistics and Econometrics

Abstract

A hyperbolic measure of technical efficiency was proposed by Fare et al. (The Measurement of Efficiency of Production, Kluwer-Nijhoff Publishing, Boston, 1985) wherein efficiency is measured by the simultaneous maximum, feasible reduction in input quantities and increase in output quantities. In cases where returns to scale are not constant, the non-parametric data envelopment analysis (DEA) estimator of hyperbolic efficiency cannot be written as a linear program; consequently, the measure has not been used in empirical studies except where returns to scale are constant, allowing the estimator to be computed by linear programming methods. This paper develops an alternative estimator of the hyperbolic measure proposed by Fare et al. (The Measurement of Efficiency of Production, Kluwer-Nijhoff Publishing, Boston, 1985). Statistical consistency and rates of convergence are established for the new estimator. A numerical procedure allowing computation of the original estimator is provided, and this estimator is also shown to be consistent, with the same rate of convergence as the new estimator. In addition, an unconditional, hyperbolic order-m efficiency estimator is developed by extending the ideas of Cazals et al. (J. Econometric. 106:1–25, 2002). Asymptotic properties of this estimator are also given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Simar and Wilson (2000b) for a survey, and Kneip et al. (2008) for more recent results, on the statistical properties of DEA estimators. See Simar and Wilson (1998, 2000a) and Kneip et al. (2008, 2011) for details about the use of bootstrap methods to make inferences based on DEA.

  2. 2.

    One can find numerous published applications of DEA to datasets with 50–150 observations and 5 or more dimensions in the input-output space. DEA-based inefficiency estimates from such studies are likely meaningless in a statistical sense due to the curse of dimensionality problem (see Simar and Wilson (2000b) for discussion).

  3. 3.

    Wheelock and Wilson (2008) also derived asymptotic properties for a hyperbolic FDH efficiency estimator.

  4. 4.

    The Farrell (1957) input and output distance functions defined in (6.7)–(6.9) are reciprocals of the corresponding Shephard (1970) measures.

  5. 5.

    Alternatively, one might consider estimating the directional distance function

    $$\varphi (x,y) =\sup \{ \varphi \mid ((1 - \varphi )x, (1 + \varphi )y) \in \mathcal{P}\},$$

    which is a special case of the general directional distance function proposed by Chambers et al. (1996). While this distance function can be estimated by linear programming methods, proofs of asymptotic properties such as consistency, rate of convergence, etc. remain elusive.

  6. 6.

    In cases where CRS is assumed, the constraint \({\sum \nolimits }_{i=1}^{n}{\delta }_{i} = 1\) is omitted from (6.42). In such cases, efficiency is estimated in terms of distance to the boundary of the convex cone of the sample observations, as opposed to the convex hull (of the free-disposal hull) of the sample observations.

  7. 7.

    Wheelock and Wilson (2008) gave a numerical algorithm for computing their unconditional, hyperbolic order-α quantile efficiency estimator. When α = 1, their estimator is equivalent to (6.61) and (6.62). Typically, computing \(\widehat{{H}}_{n}(x,y)\) using (6.61) will be faster than setting α = 1 and applying the numerical algorithm given in Wheelock and Wilson.

  8. 8.

    To see this, replace x in (6.60) with w, set q = 1, y = 0, and replace p with (p + q). The resulting expression is equivalent to (6.65).

  9. 9.

    Recall that for any natural number d, a unit d-sphere is the set of points in (d + 1)-dimensional Euclidean space lying at distance one from a central point; the set of points comprises a d-dimensional manifold in Euclidean (d + 1)-space.

  10. 10.

    The notation Exp(3) denotes an exponential distribution with parameter 3; hence \(E(\nu ) = 1/3\).

References

  • Aigner, D., Lovell, C.A.K., & Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. Journal of Econometrics, 6, 21–37.

    Article  MathSciNet  MATH  Google Scholar 

  • Aragon, Y., Daouia, A., & Thomas-Agnan, C. (2005). Nonparametric frontier estimation: A conditional quantile-based approach. Econometric Theory, 21, 358–389.

    Article  MathSciNet  MATH  Google Scholar 

  • Boos, D.D., & Serfling, R.J. (1980). A note on differentials and the CLT and LIL for statistical functions, with application to M-estimates. The Annals of Statistics, 8, 618–624.

    Article  MathSciNet  MATH  Google Scholar 

  • Cazals, C., Florens, J.P., & Simar, L. (2002). Nonparametric frontier estimation: A robust approach. Journal of Econometrics, 106, 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  • Chambers, R.G., Chung, Y., & Färe, R. (1996). Benefit and distance functions. Journal of Economic Theory, 70, 407–419.

    Article  MATH  Google Scholar 

  • Charnes, A., Cooper, W.W., & Rhodes, E. (1981). Evaluating program and managerial efficiency: An application of data envelopment analysis to program follow through. Management Science, 27, 668–697.

    Article  Google Scholar 

  • Daouia, A. (2003). Nonparametric Analysis of Frontier Production Functions and Efficiency Measurement using Nonstandard Conditional Quantiles. PhD thesis, Groupe de Recherche en Economie Mathématique et Quantititative, Université des Sciences Sociales, Toulouse I, et Laboratoire de Statistique et Probabilités, Université Paul Sabatier, Toulouse III, 2003.

    Google Scholar 

  • Daouia, A., & Simar, L. (2007). Nonparametric efficiency analysis: A multivariate conditional quantile approach. Journal of Econometrics, 140, 375–400.

    Article  MathSciNet  MATH  Google Scholar 

  • Daraio, C., & Simar, L. (2005). Introducing environmental variables in nonparametric frontier models: A probabilistic approach. Journal of Productivity Analysis, 24, 93–121.

    Article  Google Scholar 

  • Deprins, D., Simar, L., & Tulkens, H. (1984). Measuring labor inefficiency in post offices. In Marchand, M., Pestieau, P., &Tulkens, H. (Eds.). The Performance of Public Enterprises: Concepts and Measurements, pp. 243–267. Amsterdam: North-Holland.

    Google Scholar 

  • Färe, R. (1988). Fundamentals of Production Theory. Berlin: Springer.

    MATH  Google Scholar 

  • Färe, R., Grosskopf, S., & Lovell, C.A.K. (1985). The Measurement of Efficiency of Production. Boston: Kluwer-Nijhoff Publishing.

    Google Scholar 

  • Farrell, M.J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society A, 120, 253–281.

    Article  Google Scholar 

  • Gattoufi, S., Oral, M., & Reisman, A. (2004). Data envelopment analysis literature: A bibliography update (1951–2001). Socio-Economic Planning Sciences, 38, 159–229.

    Article  Google Scholar 

  • Kneip, A., Park, B., & Simar, L. (1998). A note on the convergence of nonparametric DEA efficiency measures. Econometric Theory, 14, 783–793.

    Article  MathSciNet  Google Scholar 

  • Kneip, A., Simar, L., & Wilson, P.W. (2008). Asymptotics and consistent bootstraps for DEA estimators in non-parametric frontier models. Econometric Theory, 24, 1663–1697.

    Article  MathSciNet  MATH  Google Scholar 

  • Kneip, A., Simar, L., & Wilson, P.W. (2011). A computationally efficient, consistent bootstrap for inference with non-parametric DEA estimators. Computational Economics, Institut de Statistique, Université Catholique de Louvain, Louvain-la-Neuve, Belgium.

    Google Scholar 

  • Korostelev, A., Simar, L., & Tsybakov, A.B. (1995a). Efficient estimation of monotone boundaries. The Annals of Statistics, 23, 476–489.

    Article  MathSciNet  MATH  Google Scholar 

  • Korostelev, A., Simar, L., & Tsybakov, A.B. (1995b). On estimation of monotone and convex boundaries. Publications de l’Institut de Statistique de l’Université de Paris XXXIX, 1, 3–18.

    MathSciNet  Google Scholar 

  • Marsaglia, G. (1972). Choosing a point from the surface of a sphere. Annals of Mathematical Statistics, 43, 645–646.

    Article  MATH  Google Scholar 

  • Muller, M.E. (1959). A note on a method for generating points uniformly on n-dimensional spheres. Communications of the Association for Computing Machinery, 2, 19–20.

    Article  MATH  Google Scholar 

  • Park, B.U., Simar, L., & Weiner, C. (2000). FDH efficiency scores from a stochastic point of view. Econometric Theory, 16, 855–877.

    Article  MathSciNet  MATH  Google Scholar 

  • Shephard, R.W. (1970). Theory of Cost and Production Functions. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Simar, L., & Wilson, P.W. (1998). Sensitivity analysis of efficiency scores: How to bootstrap in nonparametric frontier models. Management Science, 44, 49–61.

    Article  MATH  Google Scholar 

  • Simar, L., & Wilson, P.W. (2000a). A general methodology for bootstrapping in non-parametric frontier models. Journal of Applied Statistics, 27, 779–802.

    Article  MathSciNet  MATH  Google Scholar 

  • Simar, L., & Wilson, P.W. (2000b). Statistical inference in nonparametric frontier models: The state of the art. Journal of Productivity Analysis, 13, 49–78.

    Article  Google Scholar 

  • Simar, L., & Wilson, P.W. (2011). Inference by the m out of n Bootstrap in Nonparametric Frontier Models. Journal of Productivity Analysis, 36, 33–53.

    Article  Google Scholar 

  • Wheelock, D.C., & Wilson, P.W. (2008). Non-parametric, unconditional quantile estimation for efficiency analysis with an application to Federal Reserve check processing operations. Journal of Econometrics, 145, 209–225.

    Article  MathSciNet  Google Scholar 

  • Wheelock, D.C., & Wilson, P.W. (2009). Robust nonparametric quantile estimation of efficiency and productivity change in U.S. commercial banking, 1985–2004. Journal of Business and Economic Statistics, 27, 354–368.

    Google Scholar 

Download references

Acknowledgements

This work was made possible by the Palmetto cluster operated and maintained by the Clemson Computing and Information Technology group at Clemson University. In addition, I have benefited from numerous discussions with Léopold Simar and other members of the Institut de Statistique, Université Catholique de Louvain in Louvain-la-Neuve over the years. Any errors are solely my responsibility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. Wilson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wilson, P.W. (2011). Asymptotic Properties of Some Non-Parametric Hyperbolic Efficiency Estimators. In: Van Keilegom, I., Wilson, P. (eds) Exploring Research Frontiers in Contemporary Statistics and Econometrics. Physica, Heidelberg. https://doi.org/10.1007/978-3-7908-2349-3_6

Download citation

Publish with us

Policies and ethics