Skip to main content

Part of the book series: Experimentator ((EXPERIMENTATOR))

  • 11k Accesses

Auszug

oder Restriktionsendonucleasen, wie sie korrekter, aber auch umständlicher heißen. Ohne sie ist Molekularbiologie auch heute noch kaum denkbar, vielleicht hätte es sie nie gegeben und dieses Buch hätte nie das Licht der Welt erblickt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Luria SE (1953) Host-induced modifications of viruses. Cold Spr. Harb. Symp. Quant. Biol. 18, 237

    CAS  Google Scholar 

  • Arber W, Dussoix D (1962) Host Specificity of DNA produced by Escherichia coli. I. Host controlled modification of bacteriophage l. J. Mol. Biol. 5, 18

    Article  PubMed  CAS  Google Scholar 

  • Dussoix D, Arber W (1962) Host Specificity of DNA produced by Escherichia coli. II. Control over acceptance of DNA from infecting phage l. J. Mol. Biol. 5, 37

    Article  PubMed  CAS  Google Scholar 

  • Smith HO, Nathans D (1973) A suggested nomenclature for bacterial host modification and restriction systems and their enzymes. J. Mol. Biol. 81, 419–423

    Article  PubMed  CAS  Google Scholar 

  • Thomas M, Davis RW (1975) Studies on the cleavage of bacteriophage lambda DNA with EcoRI Restriction endonuclease. J. Mol. Biol. 91, 315–328

    Article  PubMed  CAS  Google Scholar 

  • Chirikjian JG (Hrsg.) (1981): Gene Amplification and Analysis. Vol. 1 Restriction endonucleases. Elsevier.

    Google Scholar 

  • Chirikjian JG (Hrsg.) (1987): Gene Amplification and Analysis. Vol. 5 Restriction endonucleases and methylases. Elsevier.

    Google Scholar 

  • Oller AR et al. (1991) Ability of DNA and spermidine to affect the activity of restriction endonucleases from several bacterial species. Biochemistry 30, 2543–2549

    Article  PubMed  CAS  Google Scholar 

  • McClelland M, Nelson M, Raschke E (1994) Effect of site-specific modification on restriction endonucleases and DNA modification methyltransferases. Nucl. Acids Res. 22, 3640–3659

    Article  PubMed  CAS  Google Scholar 

  • Moreira R, Noren C (1995) Minimum duplex requirements for restriction enzyme cleavage near the termini of linear DNA fragments. Biotechniques 19, 56–59

    PubMed  CAS  Google Scholar 

  • Turbett GR, Sellner LN (1996) Digestion of PCR and RT-PCR products with restriction endonucleases without prior purification or precipitation. Promega Notes Magazine 60, 23

    Google Scholar 

  • Roberts RJ, Macelis D (1996) REBASE — restriction enzymes and methylases. Nucl. Acids Res. 24, 223–235

    Article  PubMed  CAS  Google Scholar 

  • Roberts RJ et al. (2003) A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucl. Acids Res. 31, 1805–1812

    Article  PubMed  CAS  Google Scholar 

Literatur

  • Karib AA, Ford EF, Wilmshurst EC (1954) Studies on ethidium bromide. V. The treatment of cattle infected with resistand strains of Trypanosoma congolense. J. Comp. Pathol. 64, 187–194

    PubMed  CAS  Google Scholar 

  • Kramer MH, Grunberg E (1973) Effect of ethidium bromide against transplantable tumors in mice and rats. Chemotherapy 19, 254–258

    Article  PubMed  CAS  Google Scholar 

  • Nishiwaki H et al. (1974) Experimental studies on the antitumor effect of ethidium bromide and related substances. Cancer Res. 34, 2699–2703

    PubMed  CAS  Google Scholar 

  • Copping GP, East KSM (1986) Homidium chloride. Teratogenicity study by the intraveous route in the rabbit. May & Baker Research Report, R.Tox. 600, submitted to WHO by RMB Animal Health Ltd., Essex, England

    Google Scholar 

  • Yung-Sharp D, Kumar R (1989) Protocols for the visualisation of DNA in electrophoretic gels by a safe and inexpensive alternative to ethidium bromide. Technique 1, 183–187.

    Google Scholar 

  • Flores N. et al (1992) Recovery of DNA from agarose gels stained with methylene blue. Biotechniques 13, 203–205.

    PubMed  CAS  Google Scholar 

  • Adkins S, Burmeister M (1996) Visualization of DNA in agarose gels as migrating colored bands: Applications for preparative gels and educational demonstrations. Analyt. Biochem. 240, 17–23

    Article  PubMed  CAS  Google Scholar 

  • Murilla GA et al. (1999) Development and evaluation of an exzyme-linked immunosorbent assay (ELISA) for the determination of the trypanocidal drug homidium in serum of treted cattle. J. Vet. Pharmacol. Ther. 22, 301–308

    Article  PubMed  CAS  Google Scholar 

  • Murilla GA et a. (2002) The effects of drug-sensitive and drug-resistant Trypanosoma congolense infections on the pharmacokinetics of homidium in Boran cattle. Acta Trop. 81, 185–195

    Article  PubMed  CAS  Google Scholar 

Literatur

  • Vogelstein B, Gillespie D (1979) Preparative and analytical purifiation of DNA from agarose. Proc. Nat. Acad. Sci. USA 76, 615–619

    Article  PubMed  CAS  Google Scholar 

Literatur

  • Heery DM, Gannon F, Powell R (1990) A simple method for subcloning DNA fragments from gel slices. Trends Genet. 6, 173

    Article  PubMed  CAS  Google Scholar 

Literatur

  • Bloom H, Beier H, Gross HS (1987) Improved silver staining of plant proteins, RNA and DNA in polyacrylamide gels. Electrophoresis 8, 93–99

    Article  Google Scholar 

  • Qu L, Li X, Wu G, Yang N (2005) Efficient and sensitive method of DNA silver staining in polyacrylamide gels. Electrophoresis 26, 99–101

    Article  PubMed  CAS  Google Scholar 

Literatur

  • Schwartz DC, Cantor CR (1984) Separation of yeast chromosome-sized DNAs by pulsed-field gradient electrophoresis. Cell 37, 67–75

    Article  PubMed  CAS  Google Scholar 

  • Birren B et al. (1988) Optimized conditions for pulsed field electrophoretic separations of DNA. Nucl. Acids Res. 16, 7563–7581

    Article  PubMed  CAS  Google Scholar 

  • Birren B, Lai E (1994) Rapid pulsed field separation of DNA molecules up to 250 kb. Nucl. Acids Res. 22, 5366–5370

    Article  PubMed  CAS  Google Scholar 

Literatur

  • Landers JP (1993) Capillary electrophoresis: Pioneering new approaches for biomolecular analysis. Trends Biochem. 18, 409–414

    Article  CAS  Google Scholar 

Literatur

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98, 503–517

    Article  PubMed  CAS  Google Scholar 

Literatur

  • McMaster GK, Carmichael GG (1977) Analysis of single-and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. Proc. Nat. Acad. Sci. USA 74, 4835–4838

    Article  PubMed  CAS  Google Scholar 

  • Herrin DL, Schmidt GW (1988) Rapid, reversible staining of northern blots prior to hybridization. BioTechniques 6, 196–200

    PubMed  CAS  Google Scholar 

  • Puissant C, Houdebine LM (1990) An improvement of the single-step method of RNA isolation by acid guanidine thiocyanate-phenol-chloroform extraction. BioTechniques 8, 148–149

    Article  PubMed  CAS  Google Scholar 

  • Adams MD et al. (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252, 1651–1656

    Article  PubMed  CAS  Google Scholar 

  • Adams MD, Soares MB, Kerlavage AR, Fields C, Venter JC (1993) Rapid cDNA sequencing (expressed sequence tags) from a directionally cloned human infant brain cDNA library. Nature Genetics 4, 373–380

    Article  PubMed  CAS  Google Scholar 

  • Burnett WV (1997) Northern blotting of RNA denatured in glyoxal without buffer recirculation. BioTechniques 22, 668–671

    PubMed  CAS  Google Scholar 

  • Rafalski JA, Hanafey M, Miao GH, Ching A, Lee JM, Dolan M, Tingey S (1998) New experimental and computational approaches to the analysis of gene expression. Acta Biochim. Pol. 45, 929–934

    PubMed  CAS  Google Scholar 

  • Schmitt AO, Specht T, Beckmann G, Dahl E, Pilarsky CP, Hinzmann B, Rosenthal A (1999) Exhaustive mining of EST libraries for genes differentially expressed in normal and tumour tissues. Nucl. Acids Res. 27, 4251–4260

    Article  PubMed  CAS  Google Scholar 

Literatur

  • Kafatos FC, Jones CW, Efstratiadis A (1979) Determination of nucleic acid sequence homologies and relative concentrations by dot hybridization procedure. Nucl. Acids Res. 24, 1541–1552

    Article  Google Scholar 

  • Gress TM et al. (1992) Hybridization fingerprinting of high density cDNA library arrays with cDNA pools derived from whole tissues. Mammal. Genome 3, 609–619

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Spektrum Akademischer Verlag Heidelberg

About this chapter

Cite this chapter

(2009). Das Werkzeug. In: Der Experimentator: Molekularbiologie/ Genomics. Experimentator. Spektrum Akademischer Verlag. https://doi.org/10.1007/978-3-8274-2158-6_3

Download citation

Publish with us

Policies and ethics