Skip to main content

Ferntransport von Wasser und anorganischen Ionen

  • Chapter
Pflanzenphysiologie
  • 20k Accesses

Zusammenfassung

Bedingt durch ihr Leben am Land, d. h. an Luft mit einem normalerweise stark negativen Wasserpotenzial, verliert die Pflanze im Sprossbereich beständig Wasser durch Transpiration. Diesem Problem wurde im Verlauf der Evolution durch die Entwicklung eines Transportsystems für Wasser im Xylem begegnet, das gleichzeitig auch für den Ferntransport von anorganischen Ionen aus der Wurzel Verwendung findet. In diesem Kapitel betrachten wir die anatomischen, physikalischen und physiologischen Prinzipien, die diesem Transportsystem zugrunde liegen. Wasser und Ionen werden durch das ausgedehnte Feinwurzelsystem aus der Bodenlösung zunächst in den Apoplasten aufgenommen, an der Endodermisbarriere in den Symplasten der Wurzel überführt und von dort in die Tracheen und Tracheiden im Xylem der Leitbündel weitergeleitet. Die Kohäsionstheorie besagt, dass in den Kapillaren des Xylems ununterbrochene, unter negativem Druck stehende Wasserfäden vom Transpirationssog zu den Blättern gezogen werden.Als Triebkraft für diesen Transportprozess wird demnach die Verdunstung von Wasser in den Atemhöhlen des Blattes und die Abgabe von Wasserdampf an die Atmosphäre ausgenützt. Diese Theorie ist zwar nicht unumstritten, wird aber durch die meisten experimentellen Befunde gestützt. Vielfältige Messungen haben gezeigt, dass sowohl die Beweglichkeit und Zerreißfestigkeit des Wassers in den Gefäßen als auch die strukturellen Eigenschaften der Gefäße hinreichend sind, um den Wassertransport in die Krone hoher Bäume (bis 120 m) zu erklären. In krautigen Pflanzen oder Bäumen des tropischen Regenwalds ist darüber hinaus auch osmotisch angetriebener Xylemtransport nachweisbar, der in Erscheinung tritt, wenn die Transpiration durch hohe Luftfeuchte zum Erliegen kommt. In Sonderfällen können auch organische Substanzen im Xylem transportiert werden, z. B. Stickstoffverbindungen aus den N2-fixierenden Wurzelknöllchen der Fabaceen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Weiterführende Literatur

  • Böhm J (1893) Capillarität und Saftsteigen. Ber Dtsch Bot Ges 11: 203–212

    Google Scholar 

  • Boyer JS (1985) Water transport. Annu Rev Plant Physiol 36: 473–516

    Article  Google Scholar 

  • De Boer AH, Volkov V (2003) Logistics of water and salt transport through the plant: Structure and functioning of the xylem. Plant Cell Envir 26: 87–101

    Article  Google Scholar 

  • Fukuda H (1996) Xylogenesis: Initiation, progression, and cell death. Annu Rev Plant Physiol Plant Mol Biol 47: 299–325

    Article  CAS  PubMed  Google Scholar 

  • Gregory PJ (2006) Plant roots. Growth, activity and interaction with soils. Blackwell, Oxford

    Google Scholar 

  • Holbrook NM, Zwieniecki MA (eds) (2005) Vascular transport in plants. Elsevier, Acad Press, Amsterdam

    Google Scholar 

  • Koch GW, Sillett SC, Jennings GM, Davis SD (2004) The limits to tree height. Nature 428: 851–854

    Article  CAS  PubMed  Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic Press, San Diego

    Google Scholar 

  • Lösch R (2001) Wasserhaushalt der Pflanzen. Quelle & Meyer, Wiebelsheim

    Google Scholar 

  • Peterson CA, Enstone DE (1996) Functions of passage cells in the endodermis and exodermis of roots. Physiol Plant 97: 592–598

    Article  CAS  Google Scholar 

  • Ryan MG, Yoder BJ (1997) Hydraulic limits to tree weight and tree growth. BioScience 47: 235–242

    Article  Google Scholar 

  • Smith PMC, Atkins CA (2002) Purine biosynthesis. Big in cell division, even bigger in nitrogen assimilation. Plant Physiol 128: 793–802

    Article  CAS  PubMed  Google Scholar 

  • Steudle E (2001) The cohesion-tension mechanism and the acquisition of water by plant roots. Annu Rev Plant Physiol Plant Mol Biol 52: 847–875

    Article  CAS  PubMed  Google Scholar 

  • Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49: 775–788

    Article  CAS  Google Scholar 

  • Tanner W, Beevers H (2001) Transpiration, a prerequisite for long-distance transport of minerals in plants? Proc Natl Acad Sci USA 98: 9443–9447

    Article  CAS  PubMed  Google Scholar 

  • Tyerman SD, Bohnert HJ, Maurel C, Steudle E, Smith JAC (1999) Plant aquaporins: Their molecular biology, biophysics and significance for plant water relations. J Exp Bot 50: 1055–1071

    Article  CAS  Google Scholar 

  • Tyree MT, Ewers FW (1991) The hydraulic architecture of trees and other woody plants. New Phytol 119: 345–360

    Article  Google Scholar 

  • Tyree MT, Zimmermann MH (2002) Xylem structure and the ascent of sap. 2. ed, Springer, Berlin

    Google Scholar 

  • Wei C, Steudle E, Tyree MT (1999) Water ascent in plants: Do ongoing controversies have a sound basis? Trends Plant Sci 4: 372–375

    Article  PubMed  Google Scholar 

  • Zimmermann U, Schneider H, Wegner LH, Haase A (2004) Water ascent in tall trees: Does evolution of land plants rely on a highly metastable state? New Phytol 162: 575–615

    Article  Google Scholar 

In Abbildungen und Tabellen zitierte Literatur

  • Ameglio T, Morizet J, Cruiziat P, Martignac M (1990) Agronomie 10: 331–340

    Article  Google Scholar 

  • Boland MJ, Hanks JF, Reynolds PHS, Blevin DG, Tolbert NE, Schubert KR (1982) Planta 155: 45–51

    Article  CAS  Google Scholar 

  • Braun HJ (1959) Z Bot 47: 421–434

    Google Scholar 

  • Clarkson DT (1988) In: Baker DA, Hall JL (eds) Solute transport in plant cells and tissues. Longman, Burnt Mill, pp 251–304

    Google Scholar 

  • Huber B (1956) Die Saftströme der Pflanzen. Springer, Berlin

    Google Scholar 

  • Koch GW, Sillett SC, Jennings GM, Davis SD (2004) Nature 428: 851–854

    Article  CAS  PubMed  Google Scholar 

  • Lewis OAM (1986) Plants and nitrogen. Arnold, London

    Google Scholar 

  • Polster H (1967) In: Lyr H, Polster H, Fiedler H-J (eds) Gehölzphysiologie. Fischer, Jena, p 181

    Google Scholar 

  • Price CA (1970) Molecular approaches to plant physiology. McGraw-Hill, New York

    Google Scholar 

  • Ray PM (1963) The living plant. Holt, Rinehart & Winston, New York

    Google Scholar 

  • Simpson GM (1981) Water stress on plants. Praeger, New York

    Google Scholar 

  • Sinnot EW, Wilson KS (1963) Botany: Principles and problems. McGraw-Hill, New York

    Google Scholar 

  • Steudle E (2002) Nova Acta Leopoldina NF 85, 323: 251–278

    Google Scholar 

  • Stocker O (1952) Grundriß der Botanik. Springer, Berlin

    Google Scholar 

  • Strafford GA (1965) Essentials of plant physiology. Heinemann, London

    Google Scholar 

  • Tanner W, Beevers M (1990) Plant Cell Environ 13: 745–750

    Article  CAS  Google Scholar 

  • Walter H (1947) Grundlagen des Pflanzenlebens. Ulmer, Stuttgart

    Google Scholar 

  • Weaver JE (1926) Root development of field crops. McGraw-Hill, New York

    Google Scholar 

  • Wei C, Steudle E, Tyree MT (1999) Trends Plant Sci 4: 372–375

    Article  PubMed  Google Scholar 

  • Zimmermann MH (1963) Sci Amer 208 (March issue): 132–142

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Spektrum Akademischer Verlag Heidelberg

About this chapter

Cite this chapter

Brennicke, A., Schopfer, P. (2010). Ferntransport von Wasser und anorganischen Ionen. In: Pflanzenphysiologie. Spektrum Akademischer Verlag. https://doi.org/10.1007/978-3-8274-2352-8_13

Download citation

Publish with us

Policies and ethics