Skip to main content

Kultivierung von Säugetierzellen

  • Chapter
Bioprozesstechnik

Zusammenfassung

Die Kultivierung von Säugetierzellen hat in Verbindung mit der industriellen Anwendung der Gen- und Biotechnik eine große medizinische und wirtschaftliche Bedeutung erlangt. Viele Hundert Gene für Proteine wurden kloniert und in tierischen Zellen exprimiert. Eine stetig steigende Zahl von Proteinen ist bereits für die Anwendung am Menschen zugelassen bzw. wird für ihre Eignung als Arzneimittel geprüft. Im Jahr 1987 wurde Actilyse® für die Therapie des Herzinfarktes in den Markt eingeführt, als eines der ersten Medikamente dieser Art, das aus Säugetierzellkulturen gewonnen wurde. Seitdem wurden viele weitere Proteine als Medikamente zur Therapie von Krankheiten in hochreiner Form und in großen Mengen aus Zellkulturen hergestellt (Tabelle 11.1). Auch die Diagnose-Möglichkeiten konnten durch gentechnische Verfahren erheblich erweitert werden. Viele Substanzen, die zuvor aufwendig und meist unwirtschaftlich aus tierischen und menschlichen Geweben extrahiert werden mussten, können inzwischen gezielt und sicher aus Säugetierzellkulturen hergestellt werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 74.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Aisen, P., Listowsky, I. (1980): Iron Transport and Storage Proteins. Ann. Rev. Biochem. 49: 357–393

    Article  PubMed  CAS  Google Scholar 

  • AMG (Arzneimittelgesetz): Gesetz über den Verkehr mit Arzneimitteln. 11.12.1998 (BGBl. I S. 3586). 14. Artikel 1 Zwölftes ÄndG vom 30.06.2004 (BGBl. I, Nr. 41, S. 2031)

    Google Scholar 

  • Amoils, S. (2006): Targeted integration. Nat. Rev. Microbiol. 4: 87

    Article  CAS  Google Scholar 

  • ArbSchG: Gesetz über die Durchführung von Maßnahmen des Arbeitsschutzes zur Verbesserung der Sicherheit und des Gesundheitsschutzes der Beschäftigten bei der Arbeit (Arbeitsschutzgesetz) vom 7. August 1996 (BGBl. I Nr. 43 vom 20.08.1996, S. 1246) zuletzt geändert am 5. Februar 2009 durch Artikel 15 Abs. 89 des Gesetzes zur Neuordnung und Modernisierung des Bundesdienstrechts (Dienstrechtsneuordnungsgesetz-DNeuG) (BGBl. I Nr. 7 vom 11.02.2009, S. 160)

    Google Scholar 

  • Barnes, L. M., Bentley, C. M., Dickson, A. J. (2000): Advances in animal cell recombinant protein production: GS-NS0 expression system. Cytotechnology 32(2): 109–123

    Article  PubMed  CAS  Google Scholar 

  • Bebbington, C. R., Renner, G., Thomson, S., King, D., Abrams, D., Yarranton, G. T. (1992): High-level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. BioTechnology 10: 169–175

    Article  PubMed  CAS  Google Scholar 

  • Bebbington, C. R., Hentschel, C. C. G. (1987): The use of vectors based on gene amplification for the expression of cloned genes in mammalian cells. In: Glover, D. M. (Hrsg.) DNA cloning, Vol. III A Practical Approach. Academic Press, San Diego, 163–180

    Google Scholar 

  • Berg, G. J., Bödecker, B. G. D. (1988): Employing a ceramic matrix for the immobilization of mammalian cells in culture. In: Spier, R. E., Griffith, J. B. (Hrsg.) Animal Cell Biotechnology, Vol. 3. Academic Press, London, 322-335

    Google Scholar 

  • BetrSichV: Verordnung über Sicherheit und Gesundheitsschutz bei der Bereitstellung von Arbeitsmitteln und deren Benutzung bei der Arbeit, über Sicherheit beim Betrieb überwachungsbedürftiger Anlagen und über die Organisation des betrieblichen Arbeitsschutzes (Betriebssicherheitsverordnung) vom 27. September 2002 (BGBl. I Nr. 70 vom 02.10.2002, S. 3777) zuletzt geändert am 18. Dezember 2008 (BGBl. I Nr. 62 vom 23.12.2008, S. 2768)

    Google Scholar 

  • Bigalke, S. (2009): Ein Impfstoff für Millionen. Süddeutsche Zeitung vom 29.10.2009. www.sueddeutsche.de/wissen/281/492636/text

    Google Scholar 

  • BImSchG: Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnliche Vorgänge (Bundes-Immissionsschutzgesetz) in der Fassung der Bekanntmachung vom 26. September 2002 (BGBl. I Nr. 71 vom 04.10.2002, S. 3830) zuletzt geändert am 11. August 2009 (BGBl. I Nr. 53 vom 17.08.2009, S. 2723)

    Google Scholar 

  • Birger Anspach, F., Curbelo, D., Hartmann, R., Garke, G., Deckwer, W. D. (1999): Expanded-bed chromatography in primary protein purification. J. Chromatogr. A 865: 129–144

    Article  PubMed  CAS  Google Scholar 

  • Blasey, H. D., Aubry, J. P., Mazzei, G. J., Bernard, A. R. (1996): Large scale transient expression with COS cells. Cytotechnology 18: 183–192

    Article  Google Scholar 

  • Bonarius, H. P. J., Oezemere, A., Timmerarends, B., Skrabal, P., Tramper, J., Schmid, G., Heinzle, E. (2001): Metabolicflux analysis of continuously cultured hybridoma cells using 13CO2 mass spectrometry in combination with 13-Clactate nuclear magnetic resonance spectroscopy and metabolite balancing. Biotechnol. Bioeng. 74(6): 528-538

    Article  PubMed  Google Scholar 

  • Büntemeyer, H., Siwiora, S., Lehmann, J. (1997): Inhibitors of cell growth: accumulation and con-centration. In: Carrondo, M. J. T., Griffiths, B., Moeira, L. P. (Hrsg.) Animal Cell Technology. Kluwer Academic Publishers, Dordrecht, 651–655

    Chapter  Google Scholar 

  • Butler, M. (2005): Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl. Microbiol. Biotechnol. 68: 283–291

    Article  PubMed  CAS  Google Scholar 

  • Carr, P. A., Church, G. M. (2009): Genome engineering. Nat. Biotechnol. 27: 1151–1162

    Article  PubMed  CAS  Google Scholar 

  • Christi, Y. (1993): Animal cell culture in stirred bioreactors: Observations on scale-up. Bioprocess Eng. 9: 191–196

    Article  Google Scholar 

  • Chu, L., Robinson, D. K. (2001): Industrial choices for protein production by large-scale cell culture. Current Opinion in Biotechnology 12, 180–187 Chu 2001)

    Article  PubMed  CAS  Google Scholar 

  • Deshpande, R. R., Heinzle, E. (2004): On-line oxygen uptake rate and culture viability measurement of animal cell culture using microplates with integrated oxygen sensors. Biotechnol. Lett. 26: 763–767

    Article  PubMed  CAS  Google Scholar 

  • Dick, L. W. (2009): Investigation of proteins and peptides from yeastolate and subsequent impurity testing of drug product. Biotechnol. Progress 25(2): 570–577

    Article  CAS  Google Scholar 

  • Dübel, S. (2007): Handbook of Therapeutic Antibodies, Kapitel 9. Wiley-VCH-Verlag, Weinheim, 224-231

    Book  Google Scholar 

  • Dulbecco, R., Freeman, G. (1959): Plaque production by the polyoma virus. Virology 8: 396–397

    Article  PubMed  CAS  Google Scholar 

  • Eagle, H. (1959): Amino acid metabolism in mammalian cell cultures. Science 130: 432–437

    Article  PubMed  CAS  Google Scholar 

  • Eagle, H. (1965): Propagation in a fluid medium of a human epidermoid carcinoma, Strain KB (21811). Proc. Soc. Exp. Biol. Med. 89: 362–364

    Google Scholar 

  • Edwards, C. P., Aruffo, A. (1993): Current applications of COS cell based transient expression systems. Curr. Opinion Biotechnol. 4: 558–563

    Article  CAS  Google Scholar 

  • Elmore, S. (2007): Apoptosis: A review of programmed cell death. Toxicol. Pathol. 35(4): 495–516

    Article  PubMed  CAS  Google Scholar 

  • EMEA: European Medicines Agency. www.emea.eu.int

    Google Scholar 

  • Eriksson, L., Johansson, E., Kettaneh-Wold, N., Wikström, C., Wold, S. (2000): Design of Experiments. Principles and Applications. Umetrics AB, Umea, Schweden

    Google Scholar 

  • Evans, V. J., Bryant, J. C., Kerr, H. A., Schilling, E. I. (1964): Chemically defined media for cultivation of long-term cell strains from four mammalian species. Exp. Cell Res. 36: 439–474

    Article  PubMed  CAS  Google Scholar 

  • FDA: U.S. Food and Drug Administration. http://www.fda.gov

    Google Scholar 

  • FDA CBER: Guidance for Industry Sterile Drug Products Produced by Aseptic Processing — Current Good Manufacturing Practice

    Google Scholar 

  • FDA (1987): Guideline on general Principles of Process Validation

    Google Scholar 

  • FDA (2004): Pharmaceutical cGMPS for the 21st Century — A Risk-Based Approach, http://www.fda.gov/cder/gmp/gmp2004/GMP_finalreport2004.htm

    Google Scholar 

  • FDA (2008): Guidance for Industry Process Validation: General Principles and Practices, http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM070336.pdf

    Google Scholar 

  • Fike, R., Dadey, B., Hassett, R., Radominski, R., Jayme, D., Cady, D. (2001): Advanced granulation technology: an alternative format for serum-free, chemically defined and protein-free cell culture media. Cytotechnology 36: 33–39

    Article  PubMed  CAS  Google Scholar 

  • Fletcher, T. (2005): Designing culture media for recombinant protein production. BioProcess 3: 30–36

    CAS  Google Scholar 

  • Franek, F., Hohenwarter, O., Katinger, H. (2000): Plant protein hydrolysates: Preparation of defined peptide fractions promoting growth and production in animal cells cultures. Biotechnology Progress 16(5): 688-692

    Article  PubMed  Google Scholar 

  • GenTG: Gesetz zur Regelung von Fragen der Gentechnik (Gentechnikgesetz) vom 20.06.1990 (BGBl. I/28 1990, S. 1080; BGBl I/16 2008, S. 766)

    Google Scholar 

  • Genzel, Y., Reichl, U. (2009): Continuous cell lines as a production system for influenza vaccines. Exp. Rev. Vaccines 8(12): 1681–1692

    Article  CAS  Google Scholar 

  • Gerlach, J. (1997): Bioreactor for a hybrid liver support. In: Carrondo, M. J. T., Griffiths, B., Moreira, L. P. (Hrsg.) Animal Cell Technology. Kluwer Academic Publishers, Dordrecht, 543–555

    Chapter  Google Scholar 

  • Gerlach, J., Schauwecker, H. H., Klöppel, K., Tauber, R., Müller, C., Bücherl, E. (1989): Use of hepatocytes in adhesion and suspension cultures for liver support bioreactors. Int. J. Artif. Org. 12: 788–793

    CAS  Google Scholar 

  • Girard, P., Derouazi, M., Baumgartner, G., Bourgeois, M., Jordan, M., Jacko, B., Wurm, F. (2002): 100-liter transient transfection. Cytotechnology 38: 15–21

    Article  PubMed  CAS  Google Scholar 

  • Grace, T. D. C. (1962): Establishment of four strains of cells from insect tissues grown in vitro. Nature 195: 788–789

    Article  PubMed  CAS  Google Scholar 

  • Graham, F. L., Smiley, J., Russell, W. C., Nairn, R. (1977): Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36: 59–74

    Article  PubMed  CAS  Google Scholar 

  • Ham, R. G. (1965): Clonal growth of mammalian cells in a chemically defined, synthetic medium. Proc. Natl. Acad. Sci. 53: 288–293

    Article  PubMed  CAS  Google Scholar 

  • Hang, H., Fox, M. H. (2004): Analysis of the mammalian cell cycle by flow cytometry. Methods Mol. Biol. 241: 23-35

    PubMed  Google Scholar 

  • Harmsen, M. M., De Haard, H. J. (2007): Properties, production, and applications of camelid single-domain antibody fragments. Appl. Microbiol. Biotechnol. 77(1): 13–22

    Article  PubMed  CAS  Google Scholar 

  • Harrison, T., Graham, F., Williams, J. (1977): Host-range mutants of adenovirus type 5 defective for growth in HeLa cells. Virology 77: 319–329

    Article  PubMed  CAS  Google Scholar 

  • Haubitz, M., Fliser, D., Haller, H. (2004): Proteomanalyse — eine neue Perspektive für die klinische Diagnostik. Deutsches Ärzteblatt 101(21): 1514–1517

    Google Scholar 

  • Hayflick, L. (1997): Mortality and immortality at the cellular level. A review. Biochemistry (Moscow) 62: 1180–1190

    CAS  Google Scholar 

  • Holliger, P., Hudson, P. J. (2005): Engineered antibody fragments and the rise of single domains. Nat. Biotechnol. 23: 1126–1136

    Article  PubMed  CAS  Google Scholar 

  • Holt, L. J., Herring, C., Jespers, L. S., Woolven, B. P., Tomlinson, I. M. (2003): Domain antibodies: proteins for therapy. Trends Biotechnol. 21: 484–490

    Article  PubMed  CAS  Google Scholar 

  • International Conference on Harmonisation (ICH) (2000): Q7A Good Manufacturing Practice Guidance for Active Pharmaceutical Ingredients

    Google Scholar 

  • ICH Q7A (2000): Q7A Good Manufacturing Practice Guidance for Active Pharmaceutical Ingredients, Abschnitt 18.3

    Google Scholar 

  • Iscove, N. N., Melchers, F. (1978): Complete replacement of serum by albumin, transferrin, and soybean lipid in cultures of lipopolysaccharide-reactive B lymphocytes. J. Exp. Medicine 147: 923–933

    Article  CAS  Google Scholar 

  • Jarvis, D. L. (2003): Developing baculovirus-insect cell expression systems for humanized recombinant glycoprotein production. Virology 310: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Joeris, K., Frerichs, J. G., Konstantinov, K., Scheper, T. (2002): In situ microscopy: Online process monitoring of mammalian cell cultures. Cytotechnology 38: 129–134

    Article  PubMed  CAS  Google Scholar 

  • John, G. T., Goelling, D., Klimant, I., Schneider, H., Heinzle, E. (2003): pH-Sensing 96-well microtitre plates for the characterization of acid production by dairy starter cultures. J. Dairy Res. 70: 327–333

    Article  PubMed  CAS  Google Scholar 

  • Jones, D., Kroos, N., Anema, R., van Montfort, B., Vooys, A., van der Kraats, S., van der Helm, E., Smits, S., Schouten, J., Brouwer, K., Lagerwerf, F., van Berkel, P., Opstelten, D. J., Logtenberg, T., Bout, A. (2003): High-level expression of recombinant IgG in the human cell line per.c6. Biotechnol. Prog. 19(1): 163–168

    Article  PubMed  CAS  Google Scholar 

  • Kalyanpur, M. (2002): Downstream processing in the biotechnology industry. Mol. Biotechnol. 22: 87–98

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann, H., Grammatikos, S., Hoffmann, H., Carius, W. (2005): Towards mature production platforms for biopharmaceuticals. BioWorld Europe: 2–4

    Google Scholar 

  • Kaufman, R. J., Sharp, P. A. (1982): Amplification and expression of sequences cotransfected with a modular dihydrofolate reductase complementary DNA gene. J. Mol. Biol. 159: 601–621

    Article  PubMed  CAS  Google Scholar 

  • Kaufman, R. J., Wasley, L. C., Spiliotes, A. J., Gossels, S. D., Latt, S. A., Larsen, G. R., Kay, R. M. (1985): Coamplification and coexpression of human tissue-type plasminogen activator and murine dihydrofolate reductase sequences in Chinese hamster ovary cells. Mol. Cell Biol. 5: 1750–1759

    PubMed  CAS  Google Scholar 

  • Kempken, R., Büntemeyer, H., Lehmann, J. (1992): Long term application of medium recycling for economic antibody production. In: Spier, R. E., Griffiths, J. B., MacDonald, C. (Hrsg.) Animal Cell Technology. Butterworth-Heinemann Ltd, Oxford, 264-267

    Google Scholar 

  • Kim, N. S., Kim, S. J., Lee, G. M. (1998): Clonal variability within dihydrofolate reductase-mediated gene amplified Chinese hamster ovary cells: stability in the absence of selective pressure. Biotechnol. Bioeng. 60: 679–688

    Article  PubMed  CAS  Google Scholar 

  • Kirdar, A. O., Conner, J. S., Baclaski, J., Rathore, A. S. (2007): Application of multivariate analysis toward biotech processes: case study of a cell-culture unit operation. Biotechnol. Prog. 23: 61-67

    Article  PubMed  Google Scholar 

  • Kleinig, H., Maier, U. (1999): Zellbiologie. 4. Aufl. Fischer, Stuttgart

    Google Scholar 

  • Koller, M. R., Palson, B. O. (1993): Tissue engineering: Reconstitution of human hematopoesis ex vivo. Biotechnol. Bioeng. 42: 909–930

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, S. (2007a): Pipelines turn to biotech. Nat. Biotechnol. 25: 1342

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, S. (2007b): Billion dollar babies — biotech drugs as blockbusters. Nat. Biotechnol. 25: 380–382

    Article  PubMed  CAS  Google Scholar 

  • Li, F., Hashimura, Y., Pendleton, R., Harms, J., Collins, E., Lee, B. (2006): A systematic approach for scale-down model development and characterization of commercial cell culture processes. Biotechnol. Prog. 22: 696–703

    Article  PubMed  Google Scholar 

  • Lindl, T. (2002): Zell-und Gewebekultur. 5. Aufl. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Lipps, H. J., Jenke, A. C. W., Nehlsen Scinteie, K. M., Stehle, I. M., Bode, J. (2003) Chromosome-based vectors for gene therapy. Gene 304: 23–33

    Article  PubMed  CAS  Google Scholar 

  • Löser, P., Schirm, J., Guhr, A., Wobus, A. M., Kurtz, A. (2010): Human embryonic stem cell lines and their use in international research. Stem Cells 28: 240–246

    PubMed  Google Scholar 

  • Macpherson, I., Stoker, M. (1962): Polyoma transformation of hamster cell clones — an investigation of genetic factors affecting cell competence. Virology 16: 147–151

    Article  PubMed  CAS  Google Scholar 

  • Marks, D. M. (2003): Equipment design considerations for large scale cell culture. Cytotechnology 42: 21–33

    Article  PubMed  CAS  Google Scholar 

  • Michal, G. (1999): Biochemical Pathways: Biochemie-Atlas. Spektrum Akademischer Verlag, Heidelberg

    Google Scholar 

  • Moore, G. E., Gerner, R. E., Franklin, H. A. (1967): Culture of normal human leukocytes. J. Am. Medical Assoc. 199: 87–92

    Google Scholar 

  • Nehlsen, K., Schucht, R., Gama-Norton, L., Kromer, W., Baer, A., Cayli, A., Hauser, H., Wirth, D. (2009): Recombinant protein expression by targeting pre-selected chromosomal loci. BioMed Central Biotechnol. 9(1): 100

    Article  Google Scholar 

  • Nelson, L. S. (1984): The Shewhart control charts — tests for special causes. J. Quality Technol. 16(4): 237–239

    Google Scholar 

  • Nelson, L. S. (1985): Interpreting Shewhart X control charts. J. Quality Technol. 17(2): 114–116

    Google Scholar 

  • Oezemere, A., Heinzle, E. (2001): Measurement of oxygen uptake and carbon dioxide production rates of mammalian cells using membrane mass spectrometry. Cytotechnology 37: 153–162

    Article  Google Scholar 

  • Osterholm, M. T. (2005): Preparing for the next pandemic. N. Engl. J. Med. 352(18): 1839–1842

    Article  PubMed  CAS  Google Scholar 

  • Owen, J. S., McIntyre, N., Gillett, M. P. T. (1984): Lipoproteins, cell membranes and cellular functions. Trends Biochem. Sci. 9: 238–242

    Article  Google Scholar 

  • Pallavicini, M. G., DeTeresa, P. S., Rosette, C., Gray, J. W., Wurm, F. M. (1990): Effects of methotrexate on transfected DNA stability in mammalian cells. Mol. Cell Biol. 10: 401–404

    PubMed  CAS  Google Scholar 

  • Parenteral Drug Association (2005): Process Validation of Protein Manufacturing. PDA (Parenteral Drug Association) Technical Report No. 42, Supplement Vol. 59, No. S-4, September/Oktober 2005

    Google Scholar 

  • Patterson, S. D., Aebersold, R. H. (2003): Proteomics: The first decade and beyond. Nat. Genet. 33: 311-323

    Article  PubMed  Google Scholar 

  • Pearn, W. L., Kotz, S. (2006): Encyclopedia and Handbook of Process Capability Indices, Series on Quality, Reliability and Engineering Statistics, Vol. 12, Chapter 3. World Scientific Publishing PharmBetrV: Betriebsverordnung für pharmazeutische Unternehmer vom 08.03.1985 (BGBl. I, S. 546), geändert durch 9. Artikel 1 der Dritten Verordnung zur Änderung der Betriebsverordnung für pharmazeutische Unternehmer vom 10.08.2004 (BGBL, S. 2155)

    Google Scholar 

  • Purtle, D. R., Festen, R. M., Etchberger, K. J., Caffrey, M. B., Doak, J. A. (2003): Validated gamma radiated serum products. JRH Biosciences Research Report No. R013: 1–4 (jrhbio.com)

    Google Scholar 

  • Radominski, R., Hassett, R., Dadey, B., Fike, R., Cady, D., Jayme, D. (2001): Production-scale qualification of a novel cell culture medium format. BioPharm. Int. 14: 34–39

    CAS  Google Scholar 

  • Rathore, A., Krishnan, R., Tozer, S., Smiley, D., Rausch, S., Seeley, J. (2005): Scaling down of biopharmaceutical unit operations-part I: Fermentation. BioPharm. Int.: 60–68

    Google Scholar 

  • Rinderknecht, E., Humbel, R. E. (1978): The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J. Biol. Chem. 253: 2769–2776

    PubMed  CAS  Google Scholar 

  • Roitt, I. M., Brostoff, J., Male, D. (2001): Immunology. 6. Aufl. Mosby, Edinburgh

    Google Scholar 

  • Ruddle, F. H., Kucherplati, R. S. (1974): Hybrid cells and human genes. Sci. Amer. 231: 36–49

    Article  PubMed  CAS  Google Scholar 

  • Runstadler, P. W., Tung, A. S., Hayman, E. G., Ray, N. G., Sample, J. G., DeLucia, D. E. (1990): Continuous culture with macroporous matrix, fluidized bed systems. Bioprocess Technol. 10: 363–391

    PubMed  CAS  Google Scholar 

  • Sarmientos, P., Duchesne, M., Denefle, P., Boiziau, J., Fromage, N., Delporte, N., Parker, F., Lelievre, Y., Mayaux, J. F., Cartwright, T. (1989): Synthesis and purification of active human tissue plasminogen activator from Escherichia coli. Bio/Technology 7: 495–501

    Article  CAS  Google Scholar 

  • Scarff, M., Arnold, S. A., Harvey, L. M., McNeal, B. (2006): Near infrared spectroscopy for bioprocess monitoring and control: current status and future trends. Crit. Rev. Biotechnol. 26: 17–39

    Article  PubMed  CAS  Google Scholar 

  • Schlaeger, E.-J. (1996): Medium design for insect cell culture. Cytotechnology 20: 57–70

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, R. S. (2003): Diversity of the immune repertoire and immunoregulation. New Eng. J. Med. 348: 1017–1026

    Article  PubMed  CAS  Google Scholar 

  • Sedlacek, H. H., Seemann, G., Hoffmann, D. (1992): Antibodies as carriers of cytotoxicity. Monographie „Beiträge zur Onkologie“, Vol. 43. Karger, Basel

    Google Scholar 

  • Smith, L. C., Pownall, H. J., Gotto Jr., A. M. (1978): The plasma lipoproteins: structure and metabolism. Annu. Rev. Biochem. 47: 751–777

    Article  PubMed  CAS  Google Scholar 

  • Storhas, W. (1994): Bioreaktoren und periphere Einrichtungen. 1. Aufl. Vieweg-Verlag GmbH, Braunschweig

    Book  Google Scholar 

  • Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., Yamanaka, S. (2007): Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131: 1–12

    Article  Google Scholar 

  • Trommer, H. (2009): Die Gute Herstellpraxis bei der industriellen Fertigung von Arzneimitteln. Apotheken-Magazin, Gebr. Storck GmbH & Co. Verlags oHG, Oberhausen, 8–14

    Google Scholar 

  • Twyman, R. M., Stoger, E., Schillberg, S., Christou, P., Fischer, R. (2003): Molecular farming in plants: host systems and expression technology. Trends Biotechnol. 21: 570–578

    Article  PubMed  CAS  Google Scholar 

  • Ulber, R., Frerichs, J. G., Beutel, S. (2003): Optical sensor systems for bioprocess monitoring. Anal. Bioanal. Chem. 376: 342–348

    PubMed  CAS  Google Scholar 

  • Urlaub, G., Chasin, L. A. (1980): Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc. Natl. Acad. Sci. USA 77: 4216–4220

    Article  PubMed  CAS  Google Scholar 

  • Verhar, G. A., Keyt, B., Eaton, D., Rodriguez, H., O’Brien, D. P., Rotblat, F., Oppermann, H., Keck, R., Wood, W. I., Harkins, R. N., Tuddenham, E. G. D., Lawn, R. M., Capon, D. J. (1984): Structure of human factor VIII. Nature 312: 337–342

    Article  Google Scholar 

  • Voisard, D., Meuwly, F., Ruffieux, P.-A., Baer, G., Kadouri, A. (2003): Potential of cell retention techniques for largescale high-density perfusion culture of suspended mammalian cells. Biotechnol. Bioeng. 82: 751–765

    Article  PubMed  CAS  Google Scholar 

  • Vorlop, J., Lehmann, J. (1989): Oxygen transfer and carrier mixing in large scale membrane stirred culture reactors. In: Spier, R. E., Griffith, J. B., Stephenne, J., Crooy, P. J.: Advances in Animal Cell Biology and Technology for Bioprocesses. Butterworths, Svenoaks, UK, 366–369

    Google Scholar 

  • Werner, R. G., Hoffmann, H. (1989): Biotechnische Produktion einer neuen Generation von Arzneimitteln: Therapie mit körpereigenen Wirkstoffen. Praxis der Naturwissenschaften/Chemie 38: 3–12

    Google Scholar 

  • Werner, R. G., Merk, W., Walz, F. (1988): Fermentation with immobilized cell cultures. Arzneimittelforschung 38(2): 320–325

    PubMed  CAS  Google Scholar 

  • Yamane, I. (1978): Role of bovine serum albumin in a serumfree culture medium and its application. Natl. Cancer Inst. Monogr. 48: 131–133

    PubMed  Google Scholar 

  • Young, M. W., Okita, W. B., Brown, E. M., Curling, J. M. (1997): Production of biopharmaceutical proteins in the milk of transgenic dairy animals. BioPharm. 10: 34–38

    Google Scholar 

  • Zhang, W. J., Collins, A., Knyazev, I., Gentz, R. (1998): Highdensity perfusion culture of insect cells with a BioSep ultrasonic filter. Biotechnol. Bioeng. 59: 351–359

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X. C. (2002): Terahertz wave imaging: Horizons and hurdles. Phys. Med. Biol. 47(21): 3667–3677

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Spektrum Akademischer Verlag Heidelberg

About this chapter

Cite this chapter

Howaldt, M., Walz, F., Kempken, R. (2011). Kultivierung von Säugetierzellen. In: Chmiel, H. (eds) Bioprozesstechnik. Spektrum Akademischer Verlag, Heidelberg. https://doi.org/10.1007/978-3-8274-2477-8_11

Download citation

Publish with us

Policies and ethics