Skip to main content

Transcriptional Modulation by Nuclear Matrix Protein P130/MAT3 Associated with MAR/SAR

  • Chapter
Nuclear Dynamics

Abstract

Various types of proteins are required for nuclear organization, which confers a variety of nuclear functions in eukaryotic cells. A set of proteins forms the chromosomal backbone (Paulson and Laemmli 1977) and different sets of proteins including chromatin-remodeling factors regulate the utilization of genetic code in chromosomal DNA (Boulikas 1995; Moazed 2001; Muchardt and Yaniv 2001). Eukaryotic chromosomes are topologically attached to the nuclear matrix (NM) or scaffold, a network of protein fibers referred to as the skeletal framework of the nucleus. The NM or scaffold is operationally defined as the residual structures that remain insoluble after extraction of nuclei with a high concentration of either salt or detergent. Several members of the group of proteins classified as components of the NM can directly bind to particular segments of chromosomal DNA. A DNA segment to which matrix and scaffold proteins can bind is termed a matrix or scaffold attachment region (MAR/SAR) (Cockerill and Garrard 1986; Gasser and Laemmli 1986; Cockerill et al. 1987; Jarman and Higgs 1988). One significant role of MAR/SARs that was revealed by structural analyses of the nucleus and chromosomes is the matrix- or scaffold-mediated stabilization of chromosomal structure. Chromosomal loops with an approximate length of ∼60 kilobases yield compact configurations of chromosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez JD, Yasui DH, Niida H, Joh T, Loh DY, Kohwi-Shigematsu T (2000) The MAR-binding protein SATB1 orchestrates temporal and spatial expression of multiple genes during T-cell development. Genes Dev 14:521–535

    PubMed  CAS  Google Scholar 

  • Boulikas T (1995) Chromatin domains and prediction of MAR sequences. Int Rev Cytol 162A:279–388

    PubMed  CAS  Google Scholar 

  • Boyes J, Bird A (1991) DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 64:1123–1134

    Article  PubMed  CAS  Google Scholar 

  • Cai S, Han H-J, Kohwi-Shigematsu T (2003) Tissue-specific nuclear architecture and gene expression regulated by SATB1. Nat Genet 34:42–51

    Article  PubMed  CAS  Google Scholar 

  • Chesnokov IN, Schmid CW (1995) Specific Alu binding protein from human sperm chromatin prevents DNA methylation. J Biol Chem 270:18539–18542

    Article  PubMed  CAS  Google Scholar 

  • Cockerill PN, Garrard WT (1986) Chromosomal loop anchorage of the kappa immunoglobulin gene occurs next to the enhancer in a region containing topoisomerase II sites. Cell 44:273–282

    Article  PubMed  CAS  Google Scholar 

  • Cockerill PN, Yuen M-H, Garrard WT (1987) The enhancer of the immunoglobulin heavy chain locus is flanked by presumptive chromosomal loop anchorage elements. J Biol Chem 262:5394–5497

    PubMed  CAS  Google Scholar 

  • Dickinson LA, Joh T, Kohwi Y, Kohwi-Shigematsu T (1992) A tissue-specific MAR/SAR DNA-binding protein with unusual binding site recognition. Cell 70:631–645

    Article  PubMed  CAS  Google Scholar 

  • Fackelmayer FO, Dahm K, Renz A, Ramsperger U, Richter A (1994) Nucleic-acid-binding properties of hnRNP-U/SAF-A, a nuclear-matrix protein which binds DNA and RNA in vivo and in vitro. Eur J Biochem 221:749–757

    Article  PubMed  CAS  Google Scholar 

  • Forrester WC, van Genderen C, Jenuwein T, Grosschedl R (1994) Dependence of enhancer-mediated transcription of the immunoglobulin mu gene on nuclear matrix attachment regions. Science 265:1221–1225

    Article  PubMed  CAS  Google Scholar 

  • Fuks, F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T (2003) The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 278:4035–4040

    Article  PubMed  CAS  Google Scholar 

  • Gasser SM, Laemmli UK (1986) Cohabitation of scaffold binding regions with upstream/enhancer elements of three developmentally regulated genes of D. melanogaster. Cell 46:521–530

    Article  PubMed  CAS  Google Scholar 

  • Hagerman P J (1990) Sequence-directed curvature of DNA. Annu Rev Biochem 59:775–781

    Article  Google Scholar 

  • Hibino Y, Nakamura K, Tsukada S, Sugano N (1993) Purification and characterization of nuclear scaffold proteins which bind to a highly repetitive bent DNA from rat liver. Biochim Biophys Acta 1174:162–170

    PubMed  CAS  Google Scholar 

  • Hibino Y, Ohzeki H, Hirose N, Morita Y, Sugano N (1998a) Involvement of DNA methylation in binding of a highly repetitive DNA component to nuclear scaffold proteins from rat liver. Biochem Biophys Res Commun 252:296–301

    Article  PubMed  CAS  Google Scholar 

  • Hibino Y, Ohzeki H, Hirose N, Sugano N (1998b) Involvement of phosphorylation in binding of nuclear scaffold proteins from rat liver to a highly repetitive DNA component. Biochim Biophys Acta 1396:88–96

    PubMed  CAS  Google Scholar 

  • Hibino Y, Ohzeki H, Sugano N, Hiraga K (2000) Transcription modulation by a rat nuclear scaffold protein, P130, and a rat highly repetitive DNA component or various types of animal and plant matrix or scaffold attachment regions. Biochem Biophys Res Commun 279:282–287

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y, Nakamura K, Iwakami N, Hibino Y, Sugano N (1990) Base sequences of highly repetitive components in nuclear DNAs from rat liver and rat-ascites hepatoma. Cancer Lett 55:201–208

    Article  PubMed  CAS  Google Scholar 

  • Jarman AP, Higgs DR (1988) Nuclear scaffold attachment sites in the human globin gene complexes. EMBO J 7:3337–3344

    PubMed  CAS  Google Scholar 

  • Jenuwein T, Forrester WC, Fernández-Herrero LA, Laible G, Dull M, Grosschedl R (1997) Extension of chromatin accessibility by nuclear matrix attachment regions. Nature 385:269–272

    Article  PubMed  CAS  Google Scholar 

  • Kohwi-Shigematsu T, Maass K, Bode J (1997) A thymocyte factor SATB1 suppresses transcription of stably integrated matrix-attachment region-linked reporter genes. Biochemistry 36:12005–12010

    Article  PubMed  CAS  Google Scholar 

  • Li W, Chen HY, Davie JR (1996) Properties of chicken erythrocyte histone deacetylase associated with the nuclear matrix. Biochem J 314:631–637

    PubMed  CAS  Google Scholar 

  • Ma H, Siegel AJ, Berezney R (1999) Association of chromosome territories with the nuclear matrix: disruption of human chromosome territories correlates with the release of a subset of nuclear matrix proteins. J Cell Biol 146:531–542

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Balbás A, Rodríguez-Campos A, García-Ramírez M, Sainz J, Carrera P, Aymamí J, Azorín F (1990) Satellite DNAs contain sequences that induce curvature. Biochemistry 29:2342–2348

    Article  PubMed  Google Scholar 

  • Moazed D (2001) Common themes in mechanisms of gene silencing. Mol Cell 8:489–498

    Article  PubMed  CAS  Google Scholar 

  • Muchardt C, Yaniv M (2001) When the SWI/SNF complex remodels.the cell cycle. Oncogene 20:3067–3075

    Article  PubMed  CAS  Google Scholar 

  • Nan X, Campoy FJ, Bird A (1997) MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88:471–481

    Article  PubMed  CAS  Google Scholar 

  • Nan X, Ng H-H, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386–389

    Article  PubMed  CAS  Google Scholar 

  • Nayler O, Strätling W, Bourquin JP, Stagljar I, Lindemann L, Jasper H, Hartmann AM, Fackelmayer FO, Ullrich A, Stamm S (1998) SAF-B protein couples transcription and pre-mRNA splicing to SAR/MAR elements. Nucleic Acids Res 26:3542–3549

    Article  PubMed  CAS  Google Scholar 

  • Paulson JR, Laemmli UK (1977) The structure of histone-depleted metaphase chromosomes. Cell 12:817–828

    Article  PubMed  CAS  Google Scholar 

  • Poljak L, Seum C, Mattioni T, Laemmli UK (1994) SARs stimulate but do not confer position independent gene expression. Nucleic Acids Res 22:4386–4394

    Article  PubMed  CAS  Google Scholar 

  • Radic MZ, Lundgren K, Hamkalo BA (1987) Curvature of mouse satellite DNA and condensation of heterochromatin. Cell 50:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Razin SV, Mantieva VL, Georgiev GP (1979) The similarity of DNA sequences remaining bound to scaffold upon nuclease treatment of interphase nuclei and metaphase chromosomes. Nucleic Acids Res 7:1713–1735

    Article  PubMed  CAS  Google Scholar 

  • Romig H, Fackelmayer FO, Renz A, Ramsperger U, Richter A (1992) Characterization of SAF-A, a novel nuclear DNA binding protein from HeLa cells with high affinity for nuclear matrix/scaffold attachment DNA elements. EMBO J 11:3431–3440

    PubMed  CAS  Google Scholar 

  • Shrader TE, Crothers DM (1990) Effects of DNA sequence and histone-histone interactions on nucleosome placement. J Mol Biol 216:69–84

    Article  PubMed  CAS  Google Scholar 

  • Singer MF (1982) Highly repeated sequences in mammalian genomes. Int Rev Cytol 76:67–112

    Article  PubMed  CAS  Google Scholar 

  • Small D, Nelkin B, Vogelstein B (1982) Nonrandom distribution of repeated DNA sequences with respect to supercoiled loops and the nuclear matrix. Proc Natl Acad Sci USA 79:5911–5915

    Article  PubMed  CAS  Google Scholar 

  • Weitzel JM, Buhrmester H, Strätling WH (1997) Chicken MAR-binding protein ARBP is homologous to rat methyl-CpG-binding protein MeCP2. Mol Cell Biol 17:5656–5666

    PubMed  CAS  Google Scholar 

  • Xu M, Hammer RE, Blasquez VC, Jones SL, Garrard WT (1989) Immunoglobulin kappa gene expression after stable integration. II. Role of the intronic MAR and enhancer in transgenic mice. J Biol Chem 264:21190–21195

    PubMed  CAS  Google Scholar 

  • Zink D, Cremer T, Saffrich R, Fischer R, Trendelenburg MF, Ansorge W, Stelzer EH (1998) Structure and dynamics of human interphase chromosome territories in vivo. Hum Genet 102:241–251

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Hibino, Y., Usui, T., Hiraga, K. (2007). Transcriptional Modulation by Nuclear Matrix Protein P130/MAT3 Associated with MAR/SAR. In: Nagata, K., Takeyasu, K. (eds) Nuclear Dynamics. Springer, Tokyo. https://doi.org/10.1007/978-4-431-30130-1_13

Download citation

Publish with us

Policies and ethics