Skip to main content

Genome Structure and Primate Evolution

  • Chapter
  • First Online:
Post-Genome Biology of Primates

Part of the book series: Primatology Monographs ((PrimMono))

Abstract

Sequences of the entire human genome reveal a relative richness in structure with repetitive elements, tandem repeats, inverted repeats, and palindrome structures. Focusing on structure, the evolution of X and Y chromosomes in primates is reviewed here, and the relationship between gene expression and gene structure on autosomes is explored. In a four-stratum scenario of mammalian sex chromosome evolution, a region of exceptionally low sequence divergence has been identified, and the reasons for this low sequence divergence are presented here. In addition, the construction of palindromes on the human Y chromosome is discussed in relationship to the emergence of genes in the male-specific region on the Y chromosome. Based on these observations, six of eight palindromes on the human Y chromosome are considered to have formed before the divergence of Old World monkeys and hominoids. The relationship between gene expression patterns and copy number variation illustrates the role of negative selection in the retention of high copy number to maintain the coordination of gene expression in a network of gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMEL:

Amelogenin

AMY1:

Amylase 1

CD:

Chromodomain

CMAH:

CMP-N-acetylneuraminic acid hydroxylase

CNV:

Copy number variation

CSP1:

Chimpanzee-specific palindrome 1

DAZ:

Deleted in azoospermia

ELN:

Tropoelastin

HSAY:

Human (Homo sapiens) Y chromosome

HSF:

Heat-shock transcription factor

KAL:

Kallman syndrome

LINEs:

Long interspersed elements

MHC:

Major histocompatibility complex

Myr:

Million years

NWMs:

New World monkeys

OWMs:

Old World monkeys

PAR1:

Pseudo-autosomal region 1

PTRY:

Chimpanzee (Pan troglodytes) Y chromosome

RBM:

RNA-binding motif

SINEs:

Short interspersed elements

VC:

Variable charge

XKR:

X Kell blood-related

References

  • Bailey JA, Yavor AM, Viggiano L et al (2002) Human-specific duplication and mosaic transcripts: the recent paralogous structure of chromosome 22. Am J Hum Genet 70:83–100

    Article  PubMed  CAS  Google Scholar 

  • Bhowmick BK, Satta Y, Takahata N (2007) The origin and evolution of human ampliconic gene families and ampliconic structure. Genome Res 17:441–450

    Article  PubMed  CAS  Google Scholar 

  • Blekhman R, Oshlack A, Gilad Y (2009) Segmental duplications contribute to gene expression differences between humans and chimpanzees. Genetics 182:627–630

    Article  PubMed  Google Scholar 

  • Cheng Z, Ventura M, She X et al (2005) A genome-wide comparison of recent chimpanzee and human segmental duplications. Nature (Lond) 437:88–93

    Article  CAS  Google Scholar 

  • Drummond-Borg M, Deeb SS, Motulsky AG (1989) Molecular patterns of X chromosome-linked color vision genes among 134 men of European ancestry. Proc Natl Acad Sci USA 86:983–987

    Article  PubMed  CAS  Google Scholar 

  • Ebersberger I, Metzler D, Schwarz C et al (2002) Genomewide comparison of DNA sequences between humans and chimpanzees. Am J Hum Genet 70:1490–1497

    Article  PubMed  CAS  Google Scholar 

  • Fu N, Drinnenberg I, Kelso J et al (2007) Comparison of protein and mRNA expression evolution in humans and chimpanzees. PLoS One 2(2):e216

    Article  PubMed  Google Scholar 

  • Groot PC, Mager WH, Frants RR (1991) Interpretation of polymorphic DNA patterns in the human alpha-amylase multigene family. Genomics 10:779–785

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa T, Satta Y, Gagneux P et al (2001) Alu-mediated inactivation of the human CMP-N-acetylneuraminic acid hydroxylase gene. Proc Natl Acad Sci USA 98:11399–11140

    Article  PubMed  CAS  Google Scholar 

  • Hughes JF, Skaletsky H, Pyntikova T et al (2010) Chimpanzee and human Y chromosomes are remarkably divergent in structure and gene content. Nature 463:536–539

    Article  PubMed  CAS  Google Scholar 

  • Iafrate AJ, Feuk L, Rivera MN et al (2004) Detection of large-scale variation in the human genome. Nat Genet 36:949–951

    Article  PubMed  CAS  Google Scholar 

  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature (Lond) 409:860–921

    Article  Google Scholar 

  • Iwase M, Satta Y, Hirai Y et al (2003) The amelogenin loci span an ancient pseudoautosomal boundary in diverse mammalian species. Proc Natl Acad Sci USA 100:5258–5263

    Article  PubMed  CAS  Google Scholar 

  • Iwase M, Satta Y, Hirai H et al (2010) Frequent gene conversion events between the X and Y homologous chromosomal regions in primates. BMC Evol Biol 10:225

    Article  PubMed  Google Scholar 

  • Khaitovich P, Muetzel B, She X et al (2004) Regional patterns of gene expression in human and chimpanzee brains. Genome Res 14:1462–1473

    Article  PubMed  CAS  Google Scholar 

  • Kuroda-Kawaguchi T, Skaletsky H, Brown LG et al (2001) The AZFc region of the Y chromosome features massive palindromes and uniform recurrent deletions in infertile men. Nat Genet 29(3):279–286

    Article  PubMed  CAS  Google Scholar 

  • Kuroki Y, Toyoda A, Noguchi H et al (2006) Comparative analysis of chimpanzee and human Y chromosomes unveils complex evolutionary pathway. Nat Genet 38:158–167

    Article  PubMed  CAS  Google Scholar 

  • Lahn BT, Page DC (1999) Four evolutionary strata on the human X chromosome. Science 286:964–967

    Article  PubMed  CAS  Google Scholar 

  • Lahn BT, Page DC (2000) A human sex-chromosomal gene family expressed in male germ cells and encoding variably charged proteins. Hum Mol Genet 9:311–319

    Article  PubMed  CAS  Google Scholar 

  • Li WH, Gu Z, Wang H et al (2001) Evolutionary analyses of the human genome. Nature (Lond) 409:847–849

    Article  CAS  Google Scholar 

  • Marques-Bonet T, Kidd JM, Ventura M et al (2009) A burst of segmental duplications in the genome of the African great ape ancestor. Nature (Lond) 457:877–881

    Article  CAS  Google Scholar 

  • Perry GH, Dominy NJ, Claw KG et al (2007) Diet and the evolution of human amylase gene copy number variation. Nat Genet 39:1256–1260

    Article  PubMed  CAS  Google Scholar 

  • Ross MT, Grafham DV, Coffey AJ et al (2005) The DNA sequence of the human X chromosome. Nature (Lond) 434:325–337

    Article  CAS  Google Scholar 

  • Samonte RV, Eichler EE (2002) Segmental duplications and the evolution of the primate genome. Nat Rev Genet 3:65–72

    Article  PubMed  CAS  Google Scholar 

  • Sawai H, Kawamoto Y, Takahata N et al (2004) Evolutionary relationships of major histocompatibility complex class I genes in simian primates. Genetics 166:1897–1907

    Article  PubMed  CAS  Google Scholar 

  • Sinzelle L, Izsvák Z, Ivics Z (2009) Molecular domestication of transposable elements: from detrimental parasites to useful host genes. Cell Mol Life Sci 66:1073–1093

    Article  PubMed  CAS  Google Scholar 

  • Skaletsky H, Kuroda-Kawaguchi T, Minx PJ et al (2003) The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature (Lond) 423:825–837

    Article  CAS  Google Scholar 

  • Szabó Z, Levi-Minzi SA, Christiano AM et al (1999) Sequential loss of two neighboring exons of the tropoelastin gene during primate evolution. J Mol Evol 49:664–671

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks Drs. Mineyo Iwase and Hielim Kim for their help in the analysis and discussion. The findings presented here are from research supported in part by a grant (16107001) from the Japan Science Promotion Society (JSPS) and in part by a grant (17018032) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoko Satta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer

About this chapter

Cite this chapter

Satta, Y. (2012). Genome Structure and Primate Evolution. In: Hirai, H., Imai, H., Go, Y. (eds) Post-Genome Biology of Primates. Primatology Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54011-3_10

Download citation

Publish with us

Policies and ethics