Skip to main content

Synthesis and Properties of π-Stacked Vinyl Polymers

  • Chapter
  • First Online:
π-Stacked Polymers and Molecules

Abstract

Synthesis, structure, and function of poly(dibenzofulvene) and its derivatives and analogues are π-stacked vinyl polymers. π-Stacked polymers indicate characteristic properties such as remarkable hypochromism in absorbance spectra and upfield shifts of signals in NMR spectra and also reduced oxidation potential and charge mobility. These properties are based on strong interactions between stacked aromatic groups that are not seen in isolated molecular systems. As π-stacked polymers can mediate charge mobility, they have a potential in applications for organic electronics. π-Stacked polymers are advantageous over main-chain conjugated polymers and can find wider applications due to the facts that they are colorless and that, in general, they have higher solubility compared with conjugated polymers. We envisage that π-stacked polymers can be excellent complements to main-chain conjugation polymers in practical polymer materials science and, further, that they could exhibit their own characteristic properties that are yet to be explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fegan A, White B, Carlson JCT, Wagner CR (2010) Chem Rev 110:3315

    CAS  Google Scholar 

  2. Fujita M (1999) Acc Chem Res 32:53

    CAS  Google Scholar 

  3. Fujita M, Tominaga M, Hori A, Therrien B (2005) Acc Chem Res 38:371

    Google Scholar 

  4. Linton B, Hamilton AD (1997) Chem Rev 97:1669

    CAS  Google Scholar 

  5. Li W-S, Aida T (2009) Chem Rev 109:6047

    CAS  Google Scholar 

  6. Rosen BM, Wilson CJ, Wilson DA, Peterca M, Imam MR, Percec V (2009) Chem Rev 109:6275

    CAS  Google Scholar 

  7. Leininger S, Olenyuk B, Stang PJ (2000) Chem Rev 100:853

    CAS  Google Scholar 

  8. Chakrabarty R, Mukherjee PS, Stang PJ (2011) Chem Rev 111:6810

    CAS  Google Scholar 

  9. Yashima E, Maeda K, Iida H, Furusho Y, Nagai K (2009) Chem Rev 109:6102

    CAS  Google Scholar 

  10. Ashkin A (1970) Phys Rev Lett 24:156

    Google Scholar 

  11. Ashkin A, Dziedic JM (1987) Science 235(4795):1517

    CAS  Google Scholar 

  12. Neuman KC, Blocka SM (2004) Rev Sci Instrum 75:2787

    CAS  Google Scholar 

  13. Ferraris J, Cowan DO, Walatka V, Perlstein JH Jr (1973) J Am Chem Soc 95:948

    CAS  Google Scholar 

  14. Jerome D, Mazaud M, Ribault M, Bechgaard K (1980) J Phys Lett 41:L955

    Google Scholar 

  15. Jerome D (2004) Chem Rev 104:5565

    CAS  Google Scholar 

  16. Kato R (2004) Chem Rev 104:5319

    CAS  Google Scholar 

  17. Kobayashi A, Fujiwara E, Kobayashi H (2004) Chem Rev 104:5243

    CAS  Google Scholar 

  18. Ravy S (2004) Chem Rev 104:5609

    CAS  Google Scholar 

  19. Talham DR (2004) Chem Rev 104:5479

    CAS  Google Scholar 

  20. Bendikov M, Wudl F, Perepichka DF (2004) Chem Rev 104:4891

    CAS  Google Scholar 

  21. Watson JD, Crick FHC (1953) Nature 171:737

    CAS  Google Scholar 

  22. Nelson JC, Saven JG, Moore JS, Wolynes PG (1997) Science 277:1793

    CAS  Google Scholar 

  23. Hill DJ, Mio MJ, Prince RB, Hughes TS, Moore JS (2001) Chem Rev 101:3893

    CAS  Google Scholar 

  24. Lokey RS, Iverson BL (1995) Nature 375:303

    CAS  Google Scholar 

  25. Nguyen JQ, Iverson BL (1999) J Am Chem Soc 121:2639

    CAS  Google Scholar 

  26. Wang W, Li L-S, Helms G, Zhou H-H, Li ADQ (2003) J Am Chem Soc 125:1120

    CAS  Google Scholar 

  27. Li ADQ, Wang W, Wang L-Q (2003) Chem Eur J 9:4594

    CAS  Google Scholar 

  28. Wang W, Han JJ, Wang L-Q, Li L-S, Shaw WJ, Li ADQ (2003) Nano Lett 3:455

    CAS  Google Scholar 

  29. Nakano T, Takewaki K, Yade T, Okamoto Y (2001) J Am Chem Soc 123:9182

    CAS  Google Scholar 

  30. Nakano T, Yade T (2003) J Am Chem Soc 125:15474

    CAS  Google Scholar 

  31. Nakano T, Yade T, Fukuda Y, Yamaguchi T, Okumura S (2005) Macromolecules 38:8140

    Google Scholar 

  32. Nakano T, Nakagawa O, Yade T, Okamoto Y (2003) Macromolecules 36:1433

    CAS  Google Scholar 

  33. Nakano T, Yade T, Yokoyama M, Nagayama N (2004) Chem Lett 33:296

    CAS  Google Scholar 

  34. Nakano T, Nakagawa O, Tsuji M, Tanikawa M, Yade T, Okamoto Y (2004) Chem Commun 144

    Google Scholar 

  35. Nakano T, Yade T, Ishizawa H, Nakagawa O, Okamoto Y (2002) ACS Polym Prep 43:609

    CAS  Google Scholar 

  36. Nakano T, Tanikawa M, Nakagawa O, Yade T, Sakamoto T (2009) J Polym Sci Part A Polym Chem 47:239

    CAS  Google Scholar 

  37. Watanabe K, Sakamoto T, Suzuki M, Fujiki M, Nakano T (2011) Chem Commun 47:10996

    CAS  Google Scholar 

  38. Nakano T (2010) Polym J 42:103

    CAS  Google Scholar 

  39. Rathore R, Abdelwahed SH, Guzei IA (2003) J Am Chem Soc 125:8712

    CAS  Google Scholar 

  40. Stevenson CD, Kiesewetter MK, Reiter RC, Abdelwahed SH, Rathore R (2005) J Am Chem Soc 127:5282

    CAS  Google Scholar 

  41. Murphy CJ, Arkin MR, Jenkins Y, Ghatlia ND, Bossman SH, Turro NJ, Barton JK (1993) Science 262:1025

    CAS  Google Scholar 

  42. Elias B, Shao F, Barton JK (2008) J Am Chem Soc 130:1152

    CAS  Google Scholar 

  43. Genereux JC, Barton JK (2010) Chem Rev 110:1642

    CAS  Google Scholar 

  44. Greenhow EJ, McNeil D, White EN (1952) J Chem Soc 1952:986

    Google Scholar 

  45. More O’Ferrall RA, Slae S (1969) J Chem Soc Chem Commun 486

    Google Scholar 

  46. Wieland H, Probst O (1937) Liebigs Ann Chem 530:274

    CAS  Google Scholar 

  47. Evans A, George D (1961) J Chem Soc 1961:4653

    Google Scholar 

  48. Alwyn G, Evans G, George DB (1962) J Chem Soc 1962:141

    Google Scholar 

  49. Yuki H, Hotta J, Okamoto Y, Murahashi S (1967) Bull Chem Soc Jpn 40:2659

    CAS  Google Scholar 

  50. Richards DH, Scilly NF (1969) J Polym Sci Polym Lett 7:99

    Google Scholar 

  51. Dewar MSJ, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902

    CAS  Google Scholar 

  52. Ueda M, Mano M, Mori H, Ito H (1991) J Polym Sci A Polym Chem 29:1779

    CAS  Google Scholar 

  53. Ueda M, Takahashi M, Suzuki T (1983) J Polym Sci Polym Phys Ed 20:1139

    Google Scholar 

  54. Ueda M, Mori H (1990) J Polym Sci A Polym Chem 28:1779

    Google Scholar 

  55. Suenaga J, Sutherlin DM, Stille JK (1984) Macromolecules 27:2913

    Google Scholar 

  56. Md. Sheikh RK, Imae I, Tharanikkarusu K, LeStrat VM-J, Kawakami Y (2000) Polym J 32:527

    CAS  Google Scholar 

  57. Zundel T, Baran J, Mazureki M, Wang J-S, Jerome R, Teyssie P (1998) Macromolecules 31:2724

    CAS  Google Scholar 

  58. Okamoto Y, Habaue S, Isobe Y, Suito Y (2003) Macromol Symp 195:75

    CAS  Google Scholar 

  59. Ray B, Isobe Y, Morioka K, Habaue S, Okamoto Y, Kamigaito M, Sawamoto M (2003) Macromolecules 36:543

    CAS  Google Scholar 

  60. Matsumoto A, Tanaka T, Tsubouchi T, Tashiro K, Saragai S, Nakamoto S (2002) J Am Chem Soc 124:8891

    CAS  Google Scholar 

  61. Nakano T, Okamoto Y, Hatada K (1992) J Am Chem Soc 114:1318

    Google Scholar 

  62. Nakano, Okamoto Y (2001) Chem Rev 101:4013

    Google Scholar 

  63. Okamoto Y, Nakano T (1994) Chem Rev 94:349

    CAS  Google Scholar 

  64. Matsumoto A, Odani T (2001) Macromol Rapid Commun 22:1195

    CAS  Google Scholar 

  65. Schmidt GMJ (1971) Pure Appl Chem 27:647

    CAS  Google Scholar 

  66. Wegner G (1977) Pure Appl Chem 49:443

    CAS  Google Scholar 

  67. Baessler H (1984) Adv Polym Sci 63:1

    CAS  Google Scholar 

  68. Enkelmann V (1984) Adv Polym Sci 63:91

    CAS  Google Scholar 

  69. Tieke B (1985) Adv Polym Sci 71:79

    CAS  Google Scholar 

  70. Hasegawa M (1995) Adv Phys Org Chem 30:117

    CAS  Google Scholar 

  71. Farina M (1984) In: Atwood JL, Davis JDE, MacNicol DD (eds) Inclusion compounds, vol 3. Academic, London, p. 297

    Google Scholar 

  72. White DM (1960) J Am Chem Soc 82:5678

    CAS  Google Scholar 

  73. Minagawa M, Yamada H, Yamaguchi K, Yoshii F (1992) Macromolecules 25:503

    CAS  Google Scholar 

  74. Allcock HR, Ferrar WT (1982) Macromolecules 15:697

    CAS  Google Scholar 

  75. Allcock HR, Silverberg EN, Dudley GK, Pucher SR (1994) Macromolecules 27:7559

    Google Scholar 

  76. Matsumoto A, Ishizu Y, Yokoi K (1998) Macromol Chem Phys 199:2511

    CAS  Google Scholar 

  77. Zhang X, Hogen-Esch TE (2000) Macromolecules 33:9176

    Google Scholar 

  78. Koch W, Holthausen MC (2000) A chemist’s guide to density functional theory. Wiley-VCH, New York, pp 197–216

    Google Scholar 

  79. Bouman TD, Hansen AE (1988) Chem Phys Lett 149:510

    CAS  Google Scholar 

  80. Becke AD (1988) Phys Rev A38:3098

    Google Scholar 

  81. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    CAS  Google Scholar 

  82. Sekine Y, Brown M, Boekelheide V (1979) J Am Chem Soc 101:3126

    CAS  Google Scholar 

  83. Allinger NL, Yuh YH, Lii J-H (1989) J Am Chem Soc 111:8551

    CAS  Google Scholar 

  84. Halgren TA (1999) J Comput Chem 20:730

    CAS  Google Scholar 

  85. Sun H (1998) J Phys Chem 102:7338

    CAS  Google Scholar 

  86. Mohamadi F, Richards NGJ, Guida WC, Liskamp R, Lipton M, Caufield C, Chang G, Hendrickson T, Still WC (1990) J Comput Chem 11:440

    CAS  Google Scholar 

  87. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) J Chem Phys 81:3684

    CAS  Google Scholar 

  88. Fletcher R, Reeves CM (1964) Comput J 7:149

    Google Scholar 

  89. Tinoco I (1960) J Am Chem Soc 82:4785

    CAS  Google Scholar 

  90. Rohdes W (1961) J Am Chem Soc 83:3609

    Google Scholar 

  91. Ellis JR (1986) In: Skotheim TA (ed) Handbook of conducting polymers, vol 1. Dekker, New York, Chapter 13

    Google Scholar 

  92. Houk KN, Lee PS, Nendel M (2001) J Org Chem 66:5517

    CAS  Google Scholar 

  93. Horrocks DL, Brown WG (1970) Chem Phys Lett 5:117

    CAS  Google Scholar 

  94. Matsuda M, Watanabe A (1987) In: Hogen-Esch TE, Smid J (eds) Recent advances in anionic polymerization. Elsevier, New York, p. 73

    Google Scholar 

  95. Hirayama F (1965) J Chem Phys 42:3163

    CAS  Google Scholar 

  96. Strohriegl P, Grazulevicius JV (1997) In: Nalwa HS (ed) Handbook of organic conductive molecules and polymers, vol 1. Wiley, New York, Chapter 11

    Google Scholar 

  97. Pearson JM, Stolka M (1981) Poly(N-vinylcarbazole). Gordon and Breach, New York, Chapter 4

    Google Scholar 

  98. Borsenberger PM, Weiss DS (1993) Organic photoreceptor systems for imaging systems. Dekker, New York

    Google Scholar 

  99. Shirota Y (2000) J Mater Chem 10:1

    CAS  Google Scholar 

  100. Strohriegl P (2002) Adv Mater 14:1439

    CAS  Google Scholar 

  101. Gill W (1972) J Appl Phys 43:5033

    Google Scholar 

  102. Hoofman RJMO, de Haas MP, Siebbeles LDA, Warman JM (1998) Nature 392:54

    CAS  Google Scholar 

  103. Grozema FC, Siebbeles LDA, Warman JM, Seki S, Tagawa S, Scherf U (2002) Adv Mater 14:228

    CAS  Google Scholar 

  104. Grozema FC, van Duijnen PT, Berlin YA, Ratner MA, Siebbeles LDA (2003) J Phys Chem A 107:5976

    CAS  Google Scholar 

  105. Forero S, Nguyen PH, Brütting W, Schwoerer M (1999) Phys Chem Chem Phys 1:1769

    CAS  Google Scholar 

  106. Kepler RG, Zeigler JM, Kurtz SR (1987) Phys Rev B 35:2818

    CAS  Google Scholar 

  107. Yokoyama M, Akiyama K, Yamamori N, Mikara H, Kusabayashi S (1985) Polym J 17:545

    CAS  Google Scholar 

  108. Fujino M, Mikawa H, Yokoyama M (1982) Photogr Sci Eng 26:84

    CAS  Google Scholar 

  109. Okahata Y, Kobayashi T, Tanaka K, Shimomura M (1998) J Am Chem Soc 120:6165

    CAS  Google Scholar 

  110. Fink H-W, Schönenberger C (1999) Nature 398:407

    CAS  Google Scholar 

  111. Porath D, Bezryadin A, de Vries S, Dekker C (2000) Nature 403:635

    CAS  Google Scholar 

  112. Braun E, Eichen Y, Sivan U, Ben-Yoseph C (1998) Nature 391:775

    CAS  Google Scholar 

  113. Debije MG, Milano MT, Benhard WA (1999) Angew Chem Int Ed 38:2752

    Google Scholar 

  114. Maiya BG, Ramasarma T (2001) Curr Sci 80:1523

    CAS  Google Scholar 

  115. Coropceanu V, Nakano T, Gruhn NE, Kwon O, Yade T, Katsukawa K-i, Bredas J-L (2006) J Phys Chem B 110:9482

    CAS  Google Scholar 

  116. Nakano T, Nakagawa O, Tsuji M, Yade T (2003) Polym Prep Jpn 52(2):1272

    Google Scholar 

  117. Yade T, Nakano T, Polym J (2006) Sci A Polym Chem 44:561

    CAS  Google Scholar 

  118. Li G, Nakano T, Tanaka K, Higashimura H (2012) Polym Prep Jpn 61(1):401; 62(2):2752

    Google Scholar 

  119. Nakano T, Yade T (2005) Polym Prep Jpn 54(1):224

    Google Scholar 

  120. Nakano T, Yade T (2005) Polym Prep Jpn 54(2):2496

    Google Scholar 

  121. Winder C, Sariciftci NS (2004) J Mater Chem 14(7):1077

    Google Scholar 

  122. Nikolou M, Malliaras GG (2008) Chem Rec 8(1):13

    CAS  Google Scholar 

  123. Yoshioka Y, Jabbour GE (2007) In: Skotheim TA, Reynolds JR (eds) Handbook of conducting polymers, 3rd edn, vol 2, pp 3/1–3/21

    Google Scholar 

  124. Bao Z (2004) Nature Ma 3(3):137

    CAS  Google Scholar 

  125. Nakano T, Nishii S, Fukuda Y, Yaegashi T, Katsukawa K-i (2006) Polym Prep Jpn 55(1):317

    Google Scholar 

  126. Nakano T, Nishii S, Fukuda Y, Fujiki M, Akimoto S, Sato S (2006) Polym Prep Jpn 55(2):2785

    Google Scholar 

  127. Sakamoto T, Yade T, Nakano T (2010) Polym Prep Jpn 59(2):3981

    Google Scholar 

  128. Crnelissen JJLM, Rowan AE, Nolte RJM, Sommerdijk NAJM (2001) Chem Rev 101:4039

    Google Scholar 

  129. Nakano T, Okamoto Y (2000) Macromol Rapid Commun 21:603

    CAS  Google Scholar 

  130. Green MM, Park J-W, Sato T, Teramoto A, Lifson S, Selinger RLB, Selinger JV (1999) Angew Chem Int Ed 38:3138

    Google Scholar 

  131. Rowan AE, Nolte RJM (1998) Angew Chem Int Ed 37:63

    CAS  Google Scholar 

  132. Gelman SH (1998) Acc Chem Res 31:173

    Google Scholar 

  133. Natta G, Pino P, Corradini P, Danusso F, Mantica E, Nazzanti G, Moraglio G (1955) J Am Chem Soc 77:1708

    CAS  Google Scholar 

  134. Pino P, Lorenzi GPP (1960) J Am Chem Soc 82:4745

    CAS  Google Scholar 

  135. Pino P, Lorenzi GP, Lardicci L (1960) Chim Ind (Milan) 42:712

    CAS  Google Scholar 

  136. Okamoto Y, Suzuki K, Ohta K, Hatada K, Yuki H (1979) J Am Chem Soc 101:4763

    CAS  Google Scholar 

  137. Mislow K, Bickart P (1976/1977) Isr J Chem 15:1

    Google Scholar 

Download references

Acknowledgments

The authors thank all collaborators involved in our research projects described in this chapter. This work was supported by MEXT (Japan) through Grants-in-Aid 25288051 and 25620091, JST ACT-C Project, the Asahi Glass Foundation, and the Sumitomo Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamaki Nakano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer

About this chapter

Cite this chapter

Nakano, T. (2014). Synthesis and Properties of π-Stacked Vinyl Polymers. In: Nakano, T. (eds) π-Stacked Polymers and Molecules. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54129-5_1

Download citation

Publish with us

Policies and ethics