Skip to main content

Interannual variations of the Hawaiian Lee Countercurrent induced by potential vorticity variability in the subsurface

  • Special Section: Original Article
  • Chapter
  • First Online:
New Developments in Mode-Water Research

Abstract

Interannual variations of the Hawaiian Lee Countercurrent (HLCC) in the 2000s were investigated using satellite and Argo profiling float observations. The satellite-observed sea surface height shows that the geostrophic eastward current was anomalously strong to the west away from Hawaii in 2003 and 2005. However, the trade winds and the orographic wind curl dipole in the lee of Hawaii that drives the climatological mean HLCC were not particularly strong in these years, suggesting that the accelerations of the HLCC were not caused by the wind stress curl forcing around Hawaii and subsequent Rossby wave propagation. Using Argo observations, we found negative potential vorticity (PV) anomalies in the subsurface north of the HLCC in these 2 years. The pycnocline is lifted northward as low PV waters of different densities stack up in the vertical, and the HLCC is then accelerated via the thermal wind. The intensification and/or southward intrusion of the eastern subtropical mode water and subtropical mode water seem to have induced negative PV anomalies in 2003 and 2005, respectively. Using highresolution ocean simulations, we confirmed the migrations of PV anomalies and their contributions to the HLCC accelerations. Although the HLCC is located away from the cores of major mode waters, our results suggest that interannual variations of the HLCC are affected by those of mode waters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aoki Y, Suga T, Hanawa K (2002) Subsurface subtropical fronts of the North Pacific as inherent boundaries in the ventilated thermocline. J Phys Oceanogr 32:2299–2311

    Article  Google Scholar 

  • Bingham F (1992) The formation and spreading of subtropical mode water in the North Pacific. J Geophys Res 97:11177–11189

    Article  Google Scholar 

  • Boyer TP, Stephens C, Antonov JI, Conkright ME, Locarnini RA, O’Brien TD, Garcia HE (2002) World ocean atlas 2001, vol 2: salinity, NOAA atlas NESDIS 50. US Government Printing Office, Washington, DC

    Google Scholar 

  • Carton L, Grodsky SA, Liu H (2008) Variability of the oceanic mixed layer, 1960–2004. J Clim 21:1029–1047

    Article  Google Scholar 

  • Chen J, Qu T, Sasaki YN, Schneider N (2010) Anti-correlated variability in subduction rate of the western and eastern North Pacific Oceans identified by an eddy-resolving ocean GCM. Geophys Res Lett 37:L23608. doi:10.1029/2010GL045239

    Article  Google Scholar 

  • Flament P, Kennan S, Lumpkin R, Sawyer M, Stroup E (1998) The ocean. In: Juvik SP, Juvik JO (eds) Atlas of Hawaii. University of Hawaii Press, Honolulu, pp 82–86

    Google Scholar 

  • Hafner J, Xie SP (2003) Far-field simulation of the Hawaiian wake: sea surface temperature and orographic effects. J Atmos Sci 60:3021–3032

    Article  Google Scholar 

  • Hanawa K, Talley LD (2001) Mode waters. In: Church J (ed) Ocean circulation and climate. Academic, London, pp 373–386

    Chapter  Google Scholar 

  • Hautala S, Roemmich D (1998) Subtropical mode water in the Northeast Pacific Basin. J Geophys Res 103(C6):13055–13066

    Article  Google Scholar 

  • Hosoda S, Xie S-P, Takeuchi K, Nonaka M (2004) Interdecadal temperature variations in the North Pacific central mode water simulated by an OGCM. J Oceanogr 60:865–877

    Google Scholar 

  • Hosoda S, Ohira T, Nakamura T (2008) A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Rep Res Dev 8:47–59

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Leetmaa A, Reynolds R, Jenne R (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kobashi F, Kawamura H (2001) Variation of sea surface height at periods of 65–220 days in the subtropical gyre of the North Pacific. J Geophys Res 106:26817–26831

    Article  Google Scholar 

  • Kobashi F, Kawamura H (2002) Seasonal variation and instability nature of the North Pacific Subtropical Countercurrent and the Hawaiian Lee Countercurrent. J Geophys Res 107:3185. doi:10.1029/2001JC001225

    Article  Google Scholar 

  • Kobashi F, Mitsudera H, Xie S-P (2006) Three subtropical fronts in the North Pacific: observational evidence for mode water-induced subsurface frontogenesis. J Geophys Res 111:C09033. doi:10.1029/2006JC003479

    Article  Google Scholar 

  • Kubokawa A (1999) Ventilated thermocline strongly affected by a deep mixed layer: a theory for subtropical countercurrent. J Phys Oceanogr 29:1314–1333

    Article  Google Scholar 

  • Kubokawa A, Inui T (1999) Subtropical countercurrent in an idealized ocean GCM. J Phys Oceanogr 29:1303–1313

    Article  Google Scholar 

  • Kubota M, Iwasaka N, Kizu S, Konda M, Kutsuwada K (2002) Japanese ocean flux data sets with use of remote sensing observations (J-OFURO). J Oceanogr 58:213–225

    Article  Google Scholar 

  • Kutsuwada K (1998) Impact of wind/wind-stress field in the North Pacific constructed by ADEOS/NSCAT data. J Oceanogr 54:443–456

    Article  Google Scholar 

  • Liu Q, Li L (2007) Baroclinic stability of oceanic Rossby wave in the North Pacific Subtropical Countercurrent. Chin J Geophys 50 (1):84–93

    Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78:1069–1079

    Article  Google Scholar 

  • Masumoto Y, Sasaki H, Kagimoto T, Komori N, Ishida A, Sasai Y, Miyama T, Motoi T, Mitsudera H, Takahashi K, Sakuma H, Yamagata T (2004) A fifty-year eddy-resolving simulation of the world ocean: preliminary outcomes of OFES (OGCM for the Earth Simulator). J Earth Simulator 1:35–56

    Google Scholar 

  • Montgomery RB, Stroup ED (1962) Equatorial waters and currents at 150°W in July–August 1952. Johns Hopkins Oceanographic Studies, no 1. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Nonaka M, Xie S-P, Sasaki H (2011) Interannual variations in low potential vorticity water and the subtropical countercurrent in an eddy-resolving OGCM. J Oceanogr. doi:10.1007/s10872-011-0042-3

  • Oka E (2009) Seasonal and interannual variation of North Pacific Subtropical Mode Water in 2003–2006. J Oceanogr 65:151–164. doi:10.1007/s10872-009-0015-y

    Article  Google Scholar 

  • Pacanowski RC, Griffies SM (1999) The MOM 3 manual, GFDL Ocean Group technical report no 4. NOAA/Geophysical Fluid Dynamics Laboratory, Princeton

    Google Scholar 

  • Qiu B, Chen S (2006) Decadal variability in the formation of the North Pacific Subtropical Mode Water: oceanic versus atmospheric control. J Phys Oceanogr 36:1365–1380. doi:10.1175/JPO2918.1

    Article  Google Scholar 

  • Qiu B, Koh DA, Lumpkin C, Flament P (1997) Existence and formation mechanism of the North Hawaiian Ridge Current. J Phys Oceanogr 27:431–444

    Article  Google Scholar 

  • Qu T, Chen J (2009) A North Pacific decadal variability in subduction rate. Geophys Res Lett 36:L22602. doi:10.1029/2009GL040914

    Article  Google Scholar 

  • Sakamoto TT, Sumi A, Emori S, Nishimura T, Hasumi H, Suzuki T, Kimoto M (2004) Far-reaching effects of the Hawaiian Islands in the CCSR/NIES/FRCGC highresolution climate model. Geophys Res Lett 31:L17212. doi:10.1029/2004GL020907

    Article  Google Scholar 

  • Sasaki H, Nonaka M (2006) Far-reaching Hawaiian Lee Countercurrent driven by wind-stress curl induced by warm SST band along the current. Geophys Res Lett 33:L13602. doi:10.1029/2006GL026540

    Article  Google Scholar 

  • Sasaki H, Sasai Y, Nonaka M, Masumoto Y, Kawahara S (2006) An eddy-resolving simulation of the quasi-global ocean driven by satellite-observed wind field: preliminary outcomes from physical and biological fields. J Earth Simulator 6:35–49

    Google Scholar 

  • Sasaki H, Nonaka M, Masumoto Y, Sasai Y, Uehara H, Sakuma H (2008) An eddy-resolving hindcast simulation of the quasi-global ocean from 1950 to 2003 on the Earth Simulator. In: Ohfuchi W, Hamilton K (eds) High resolution numerical modelling of the atmosphere and ocean. Springer, New York, pp 157–186

    Chapter  Google Scholar 

  • Sasaki H, Xie S-P, Taguchi B, Nonaka M, Masumoto Y (2010) Seasonal variations of the Hawaiian Lee Countercurrent induced by the meridional migration of the trade winds. Ocean Dyn 60 (3):705–715

    Article  Google Scholar 

  • Smith RB, GrubiÅ¡ic V (1993) Aerial observation of Hawaii’s wake. J Atmos Sci 50:3728–3750

    Article  Google Scholar 

  • Stephens C, Antonov JI, Boyer TP, Conkright ME, Locarnini RA, O’Brien TD, Garcia HE (2002) World ocean atlas 2001, vol 1: temperature, NOAA atlas NESDIS 49. US Government Printing Office, Washington, DC

    Google Scholar 

  • Suga T, Hanawa K (1995) Interannual variations of North Pacific Subtropical Mode Water in the 137E section. J Phys Oceanogr 25:1012–1017

    Article  Google Scholar 

  • Sugimoto S, Hanawa K (2010) Impact of Aleutian Low activity on the STMW formation in the Kuroshio recirculation gyre region. Geophys Res Lett 37:L03606. doi:10.1029/2009GL041795

    Article  Google Scholar 

  • Toyoda T, Awaji T, Masuda S, Sugiura N, Igarashi H, Mochizuki T, Ishikawa Y (2011) Interannual variability of North Pacific eastern subtropical mode water formation in the 1990s derived from a 4-dimensional variational ocean data assimilation experiment. Dyn Atmos Oceans 51(1–2):1–25

    Article  Google Scholar 

  • Trenberth KE, Hurrell JW (1994) Decadal atmosphere-ocean variations in the Pacific. Clim Dyn 9:303–319

    Article  Google Scholar 

  • Uda M, Hasunuma K (1969) The eastward subtropical countercurrent in the western North Pacific Ocean. J Oceanogr Soc Jpn 25:201–210

    Google Scholar 

  • Xie S-P, Kunitani T, Kubokawa A, Nonaka M, Hosoda S (2000) Interdecadal thermocline variability in the North Pacific for 1958–1997: a GCM simulation. J Phys Oceanogr 30:2798–2813

    Article  Google Scholar 

  • Xie SP, Liu WT, Liu Q, Nonaka M (2001) Far-reaching effects of the Hawaiian Islands on the Pacific Ocean-atmosphere system. Science 292:2057–2060

    Article  Google Scholar 

  • Xie S-P, Xu L-X, Liu Q, Kobashi F (2011) Dynamical role of mode-water ventilation in decadal variability in the central subtropical gyre of the North Pacific. J Clim 24:1212–1225

    Article  Google Scholar 

  • Yamanaka G, Ishizaki H, Hirabara M, Ishikawa I (2008) Decadal variability of the subtropical front of the western North Pacific in an eddy-resolving ocean general circulation model. J Geophys Res 113:C12027. doi:10.1029/2008JC005002

    Article  Google Scholar 

  • Yang Y, Xie S-P, Hafner J (2008a) Cloud patterns lee of Hawaii Island: a synthesis of satellite observations and numerical simulation. J Geophys Res 113:D15126. doi:10.1029/2008JD009889

    Article  Google Scholar 

  • Yang Y, Ma J, Xie S-P (2008b) Observations of the trade wind wakes of Kauai and Oahu. Geophys Res Lett 35:L04807. doi:10.1029/2007GL031742

    Article  Google Scholar 

  • Yoshida S, Qiu B, Hacker P (2010) Wind-generated eddy characteristics in the lee of the island of Hawaii. J Geophys Res 115:C03019. doi:10.1029/2009JC005417

    Article  Google Scholar 

  • Yu Z, Maximenko N, Xie S-P, Nonaka M (2003) On the termination of the Hawaiian Lee Countercurrent. Geophys Res Lett 30:1215. doi:10.1029/2002GL016710

    Article  Google Scholar 

Download references

Acknowledgements

The OFES simulations were conducted on the Earth Simulator under support from JAMSTEC. We thank Drs. B. Qiu and F. Kobashi for valuable discussions and the reviewers for valuable comments. We thank T. Ohira for his help in constructing the MOAA GPV product. QuikSCAT wind stress data in the J-OFURO dataset were provided by Dr. K. Kutsuwada. This study was supported in part through Grant-In-Aid for Scientific Research 22106006 and that on Innovative Areas #2205 by the Japanese Ministry of Education, Culture, Sports, Science and Technology, and also through 23340139 by the Japan Society for the Promotion of Science. IPRC publication # 809.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideharu Sasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 The Oceanographic Society of Japan and Springer

About this chapter

Cite this chapter

Sasaki, H., Xie, SP., Taguchi, B., Nonaka, M., Hosoda, S., Masumoto, Y. (2011). Interannual variations of the Hawaiian Lee Countercurrent induced by potential vorticity variability in the subsurface. In: Kubokawa, A., Xie, SP., Kobashi, F., Mitsudera, H. (eds) New Developments in Mode-Water Research. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54162-2_7

Download citation

Publish with us

Policies and ethics