Skip to main content

Block Copolymers and Miktoarm Star-Branched Polymers

  • Chapter
Anionic Polymerization

Abstract

Block copolymers self-assemble to form extremely regular nanoscale microdomain structures with a variety of morphologies. The microdomain morphology depends on the chain architectures, number of components, copolymer compositions, segregation power between the components as well as the ordering processes. In this chapter how these factors affect the microdomain morphology is mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Leibler L (1980) Theory of microphase separation in block copolymers. Macromolecules 13:1602–1617

    Article  CAS  Google Scholar 

  2. Fredrickson GH, Helfand E (1987) Fluctuation effects in the theory of microphase separation in block copolymers. J Chem Phys 87:697–705

    Article  CAS  Google Scholar 

  3. Helfand E, Wasserman ZR (1984) Microdomain structure and the interface in block copolymers. In: Goodman I (ed) Developments in block copolymers. Applied Science, Essex

    Google Scholar 

  4. Semenov AN (1993) Theory of block-copolymer interfaces in the strong segregation limit. Macromolecules 26:6617–6621

    Article  CAS  Google Scholar 

  5. Ohta T, Kawasaki K (1986) Equilibrium morphology of block copolymer melts. Macromolecules 19:2621–2632

    Article  CAS  Google Scholar 

  6. Hasegawa H, Tanaka H, Yamasaki K, Hashimoto T (1987) Bicontinuous microdomain morphology of block copolymers. 1. Tetrapod-network structure of polystyrene-polyisoprene diblock polymers. Macromolecules 20:1651–1662

    Article  CAS  Google Scholar 

  7. Hashimoto H, Shibayama M, Kawai H (1980) Domain-boundary structure of styrene-isoprene block copolymer films cast from solution. 4. Molecular-weight dependence of lamellar microdomains. Macromolecules 13:1237–1247

    Article  CAS  Google Scholar 

  8. Hashimoto T, Fujimura M, Kawai H (1980) Domain-boundary structure of styrene-isoprene block copolymer films cast from solutions. 5. Molecular-weight dependence of spherical microdomains. Macromolecules 13:1660–1669

    Article  CAS  Google Scholar 

  9. Hashimoto T, Shibayama M, Kawai H (1983) Ordered structure in block polymer solutions. 4. Scaling rules on size of fluctuations with block molecular weight, concentration, and temperature in segregation and homogeneous regimes. Macromolecules 16:1093–1101

    Article  CAS  Google Scholar 

  10. Hanley KJ, Lodge TP (1998) Effect of dilution on a block copolymer in the complex phase window. J Polym Sci Part B Polym Phys 36:3101–3113

    Article  CAS  Google Scholar 

  11. Matsen MW, Schick M (1994) Stable and unstable phases of a diblock copolymer melt. Phys Rev Lett 72:2660–2663

    Article  CAS  Google Scholar 

  12. Matsen MW, Bates FS (1996) Unifying weak- and strong-segregation block copolymer theories. Macromolecules 29:1091–1098

    Article  CAS  Google Scholar 

  13. Khandpur AK, Forster S, Bates FS, Hamley IW, Ryan AJ, Bras W, Almdal K, Mortensen K (1995) Polyisoprene-polystyrene diblock copolymer phase diagram near the order-disorder transition. Macromolecules 28:8796–8806

    Article  CAS  Google Scholar 

  14. Matsen MW, Thompson RB (1999) Equilibrium behavior of symmetric ABA triblock copolymer melts. J Chem Phys 111:7139–7146

    Article  CAS  Google Scholar 

  15. Matsen MW, Schick M (1994) Microphase separation in starblock copolymer melt. Macromolecules 27:6761–6767

    Article  CAS  Google Scholar 

  16. Matsen MW (2012) Effect of architecture on the phase behavior of AB-type block copolymer melts. Macromolecules 45:2161–2165

    Article  CAS  Google Scholar 

  17. Hajduk DA, Takenouchi H, Hillmyer MA, Bates FS, Vigrid ME, Almdal K (1997) Stability of the perforated layer (PL) phase in diblock copolymer melts. Macromolecules 30:3788–3795

    Article  CAS  Google Scholar 

  18. Takenaka M, Wakada T, Akasaka S, Nishitsuji S, Saijo K, Shimizu H, Kim MI, Hasegawa H (2007) Orthorhombic Fddd network in diblock copolymer melts. Macromolecules 40:4399–4402

    Article  CAS  Google Scholar 

  19. Kim MI, Wakada T, Akasaka S, Nishitsuji S, Saijo K, Shimizu H, Hasegawa H, Ito K, Takenaka M (2008) Stability of the Fddd phase in diblock copolymer melt. Macromolecules 41:7667–7670

    Article  CAS  Google Scholar 

  20. Kim MI, Wakada T, Akasaka S, Nishitsuji S, Saijo K, Shimizu H, Hasegawa H, Ito K, Takenaka M (2009) Determination of the Fddd phase boundary in polystyrene-block-polyisoprene diblock copolymer melts. Macromolecules 42:5266–5271

    Article  CAS  Google Scholar 

  21. Tyler CA, Morse DC (2005) Orthorhombic Fddd network in triblock and diblock copolymer melts. Phys Rev Lett 94:208302

    Article  Google Scholar 

  22. Hajduk DA, Harper PE, Gruner SM, Honeker CC, Kim G, Thomas EL, Fetters LJ (1994) The gyroid: a new equilibrium morphology in weakly segregated diblock copolymers. Macromolecules 27:4063–4075

    Article  CAS  Google Scholar 

  23. Hashimoto T, Nagatoshi K, Todo A, Hasegawa H, Kawai H (1974) Domain boundary structure of styrene-isoprene block copolymer films cast from solutions. Macromolecules 7:364–377

    Article  CAS  Google Scholar 

  24. Hyde ST, Fogden A, Ninham BW (1993) Self-assembly of linear block copolymers. Relative stability of hyperbolic phases. Macromolecules 26:6782–6788

    Article  CAS  Google Scholar 

  25. Frank J (2005) Electron tomography, 2nd edn. Springer, New York

    Google Scholar 

  26. Mareau VH, Akasaka S, Osaka T, Hasegawa H (2007) Direct visualization of the perforated layer/gyroid grain boundary in a PS-b-PI/PS blend by electron tomography. Macromolecules 40:9032–9039

    Article  CAS  Google Scholar 

  27. Yamauchi K, Takahashi K, Hasegawa H, Iatrou H, Hadjichristidis N, Kaneko T, Nishikawa Y, Jinnai H, Matsui T, Nishioka H, Shimizu M, Fukukawa H (2003) Microdomain morphology in an ABC three-arm star-shaped triblock terpolymer: a study by energy filtering TEM and 3D electron tomography. Macromolecules 36:6962–6966

    Article  CAS  Google Scholar 

  28. Breiner U, Krappe U, Stadler R (1996) Evolution of the “knitting pattern” morphology in ABC triblock copolymers. Macromol Rapid Commun 17:567–575

    Article  CAS  Google Scholar 

  29. Krappe U, Stadler R, Voigt-Martin I (1995) Chiral assembly in amorphous ABC triblock copolymers. Formation of a helical morphology in polystyrene-block-polybutadiene-block-poly(methyl methacrylate) block copolymers. Macromolecules 28:4558–4561 (correction in Macromolecules 28:7583)

    Article  CAS  Google Scholar 

  30. Bates FS, Fredrickson GL (1999) Block copolymer – designer soft materials. Phys Today 52:32–39

    Article  CAS  Google Scholar 

  31. Abetz V, Simon PFW (2005) Phase behaviour and morphologies of block copolymers. Adv Polym Sci 189:125–212

    Article  CAS  Google Scholar 

  32. Bates FS (2005) Network phases in block copolymer melts. MRS Bull 30:525–532

    Article  CAS  Google Scholar 

  33. Meuler AJ, Hillmyer MA, Bates FS (2009) Ordered network mesostructures in block polymer materials. Macromolecules 42:7221–7250

    Article  CAS  Google Scholar 

  34. Hasegawa H (2011) Morphologies of block and star-branched polymers having three components. In: Hadjichristidis N, Hirao A, Tezuka Y, Du Prez F (eds) Complex macromolecular architectures – synthesis, characterization, and self-assembly. Wiley (Asia), Singapore, pp 569–591

    Google Scholar 

  35. Mogi Y, Kotsuji H, Kaneko Y et al (1992) Preparation and morphology of triblock copolymers of the ABC type. Macromolecules 25:5408–5411

    Article  CAS  Google Scholar 

  36. Mogi Y, Mori K, Matsushita Y, Noda I (1992) Tricontinuous morphology of triblock copolymers of the ABC type. Macromolecules 25:5412–5415

    Article  CAS  Google Scholar 

  37. Epps TH, Cochran EW, Hardy CM et al (2004) Network phases in ABC triblock copolymers. Macromolecules 37:7085–7088

    Article  CAS  Google Scholar 

  38. Ueda K, Dotera T, Gemma T (2007) Photonic band structure calculations of two-dimensional Archimedean tiling patterns. Phys Rev B 75:195122

    Article  Google Scholar 

  39. Judas J, Kirkensgaard K, Hyde S (2009) Beyond amphiphiles: coarse-grained simulations of star-polyphile liquid crystalline assemblies. Phys Chem Chem Phys 11:2016–2022

    Article  Google Scholar 

  40. Matsushita Y (2007) Creation of hierarchically ordered nanophase structures in block polymers having various competing interactions. Macromolecules 40:771–776

    Article  CAS  Google Scholar 

  41. Matsushuta Y (2008) Precise molecular design of complex polymers and morphology control of their hierarchical multiphase structures. Polym J 40:177–183

    Article  Google Scholar 

  42. Matsushita Y, Takano A, Hayashida K et al (2009) Hierarchical nanophase-separated structures created by precisely designed polymers with complexity. Polymer 50:2191–2203

    Article  CAS  Google Scholar 

  43. Dotera T, Hatano A (1996) The diagonal bond method: a new lattice polymer model for simulation study of block copolymers. J Chem Phys 105:8413–8427

    Article  CAS  Google Scholar 

  44. Yamauchi K, Akasaka S, Hasegawa H et al (2005) Blends of a 3-Miktoarm star terpolymer (3 μ-ISD) of isoprene (I), styrene (S), and dimethylsiloxane (D) with PS and PDMS. Effect on microdomain morphology and grain size. Macromolecules 38:8022–8027

    Article  CAS  Google Scholar 

  45. Sioula S, Hadjichristidis N, Thomas EL (1998) Novel 2-dimensionally periodic non-constant mean curvature morphologies of 3-Miktoarm star terpolymers of styrene, isoprene, and methyl methacrylate. Macromolecules 31:5272–5277

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Hasegawa .

Editor information

Editors and Affiliations

Abbreviations

Abbreviations

BCC:

Spheres packed in body-centered cubic lattice

CPS:

Close-packed spheres

CT:

Computed tomography

DIS:

Disordered phase

Fddd:

Fddd network

HEX:

Hexagonally packed cylinders

HPL:

Hexagonally perforated layer

Ia\( \overline{3} \)d:

Double gyroid network

LAM:

Lamellae

OBDD:

Ordered bicontinuous double diamond network

ODT:

Order-disorder transition

OOT:

Order-order transition

OsO4 :

Osmium tetraoxide

OTDD:

Ordered tricontinuous double diamond network

PI:

Polyisoprene

PL:

Perforated layer

PS:

Polystyrene

RuO4 :

Ruthenium tetraoxide

SAXS:

Small-angle X-ray scattering

SCFT:

Self-consistent field theory

SI:

Polystyrene-block-polyisoprene

TEM:

Transmission electron microscopy

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Hasegawa, H. (2015). Block Copolymers and Miktoarm Star-Branched Polymers. In: Hadjichristidis, N., Hirao, A. (eds) Anionic Polymerization. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54186-8_18

Download citation

Publish with us

Policies and ethics