Skip to main content

Control of Surface Structure and Dynamics of Polymers Based on Precision Synthesis

  • Chapter
Anionic Polymerization

Abstract

Aggregation states and dynamics of polymers at the surface are generally different from those in the corresponding bulk state. To what extent they differ from that of the bulk strongly depends on the polymer primary structure. Therefore, fine-tuning the surface properties of polymers can be achieved by exhibiting control over their structure using precision polymer synthesis. We here show how the polymer design effectively impacts the structure and dynamics at the surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karim A, Kumar S (2000) Polymer surfaces, interfaces and thin films. World Scientific, Singapore

    Google Scholar 

  2. Tsui OKC, Russell TP (2008) Polymer thin films, vol 1, Series in soft condensed matter. World Scientific, Singapore

    Google Scholar 

  3. Kanaya T (2013) Glass transition, dynamics and heterogeneity of polymer thin films, vol 252, Advances in polymer science. Springer, Heidelberg. doi:10.1007/978-3-642-34339-1

    Book  Google Scholar 

  4. Keddie JL, Jones RAL, Cory RA (1994) Size-dependent depression of the glass transition temperature in polymer films. Europhys Lett 27:59–64. doi:10.1209/0295-5075/27/1/011

    Article  CAS  Google Scholar 

  5. Forrest JA, DalnokiVeress K, Dutcher JR (1997) Interface and chain confinement effects on the glass transition temperature of thin polymer films. Phys Rev E 56:5705–5716. doi:10.1103/PhysRevE.56.5705

    Article  CAS  Google Scholar 

  6. DeMaggio GB, Frieze WE, Gidley DW, Zhu M, Hristov HA, Yee AF (1997) Interface and surface effects on the glass transition in thin polystyrene films. Phys Rev Lett 78:1524–1527. doi:10.1103/PhysRevLett.78.1524

    Article  CAS  Google Scholar 

  7. Ellison CJ, Torkelson JM (2003) The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat Mater 17:461–524. doi:10.1038/nmat980

    Google Scholar 

  8. Akabori K, Tanaka K, Nagamura T, Takahara A, Kajiyama T (2005) Molecular motion in ultrathin polystyrene films: dynamic mechanical analysis of surface and interfacial effects. Macromolecules 38:9735–9741. doi:10.1021/ma051143e

    Article  CAS  Google Scholar 

  9. Alcoutlabi M, McKenna GB (2005) Effects of confinement on material behaviour at the nanometre size scale. J Phys Condens Matter 17:R461–R524. doi:10.1088/0953-8984/17/15/R01

    Article  CAS  Google Scholar 

  10. Zhang C, Fujii Y, Tanaka K (2012) Effect of long range interactions on the glass transition temperature of thin polystyrene films. ACS Macro Lett 1:1317–1320. doi:10.1021/mz300391g

    Article  CAS  Google Scholar 

  11. Tanaka K, Takahara A, Kajiyama T (1995) Surface molecular motion in thin films of poly(styrene-block-methyl methacrylate) diblock copolymer. Acta Polym 46:476–482. doi:10.1002/actp.1995.010460612

    Article  CAS  Google Scholar 

  12. Kajiyama T, Tanaka K, Takahara A (1995) Depth dependence of the surface glass transition temperature of a poly(styrene-block-methyl methacrylate) diblock copolymer film on the basis of temperature-dependent X-ray photoelectron spectroscopy. Macromolecules 28:3482–3484. doi:10.1021/ma00113a059

    Article  CAS  Google Scholar 

  13. Tanaka K, Taura A, Shou-Ren G, Takahara A, Kajiyama T (1996) Molecular weight dependence of surface dynamic viscoelastic properties for the monodisperse polystyrene film. Macromolecules 29:3040–3042. doi:10.1021/ma951378y

    Article  CAS  Google Scholar 

  14. Tanaka K, Hashimoto K, Kajiyama T, Takahara A (2003) Visualization of active surface molecular motion in a polystyrene film by scanning viscoelasticity microscopy. Langmuir 19:6573–6575. doi:10.1021/la034542g

    Article  CAS  Google Scholar 

  15. Liu Y, Russeell TP, Samant MG, Stohr J, Brown H, Cossy-Favre A, Diaz J (1997) Surface relaxations in polymers. Macromolecules 30:7768–7771. doi:10.1021/ma970869a

    Article  CAS  Google Scholar 

  16. Wallace WE, Fischer DA, Efimenko K, Wu W-L, Genzer J (2001) Polymer chain relaxation: surface outpaces bulk. Macromolecules 34:5081–5082. doi:10.1021/ma002075t

    Article  CAS  Google Scholar 

  17. Xie L, DeMaggoio GB, Frieze WE, DeVries J, Gidley DW, Hristov HA, Yee AF (1995) Positronium formation as a probe of polymer surface and thin films. Phys Rev Lett 74:4947–4950. doi:10.1103/PhysRevLett.74.4947

    Article  CAS  Google Scholar 

  18. Jean YC, Zhang R, Cao H, Yuan J–P, Huang C–M, Nielsen B, Asoka-Kumar P (1997) Glass transition of polystyrene near the surface studied by slow-positron-annihilation spectroscopy. Phys Rev B 56:R8459–R8462. doi:10.1103/PhysRevB.56.R8459

    Article  CAS  Google Scholar 

  19. Schwab AD, Agra DMG, Kim J–H, Kumar S, Dhinojwala A (2000) Surface dynamics in rubbed polymer thin films probed with optical birefringence measurements. Macromolecules 33:4903–4909. doi:10.1021/ma9919514

    Article  CAS  Google Scholar 

  20. Tsang OC, Xie FC, Tsui OKC, Yang Z, Zhang JM, Shen DY, Yang XZ (2001) Rubbing-induced molecular alignment and its relaxation in polystyrene thin films. J Polym Sci Part B Polym Phys 39:2906–2914. doi:10.1002/polb.10048

    Article  CAS  Google Scholar 

  21. Kerle T, Lin Z, Kim H–C, Russell TP (2001) Mobility of polymers at the air/polymer interface. Macromolecules 34:3484–3492. doi:10.1021/ma0020335

    Article  CAS  Google Scholar 

  22. Hamdorf M, Johannsmann D (2000) Surface-rheological measurements on glass forming polymers based on the surface tension driven decay of imprinted corrugation gratings. J Chem Phys 112:4262–4270. doi:10.1063/1.481002

    Article  CAS  Google Scholar 

  23. Tanaka K, Tateishi Y, Okada Y, Nagamura T, Doi M, Morita H (2009) Interfacial mobility of polymers on inorganic solids. J Phys Chem B 113:4571–4577. doi:10.1021/jp810370f

    Article  CAS  Google Scholar 

  24. Fujii Y, Yang Z, Leach J, Atarashi H, Tanaka K, Tsui OKC (2009) Affinity of polystyrene films to hydrogen-passivated silicon and its relevance to the T g of the films. Macromolecules 42:7418–7422. doi:10.1021/ma901851w

    Article  CAS  Google Scholar 

  25. Inoue R, Kawashima K, Matsui K, Nakamura M, Nishida K, Kanaya T, Yamada NL (2011) Interfacial properties of polystyrene thin films as revealed by neutron reflectivity. Phys Rev E 84:031802/1–031802/7. doi:10.1103/PhysRevE.84.031802

    Article  CAS  Google Scholar 

  26. Napolitano S, Wubbenhorst M (2011) The lifetime of the deviations from bulk behaviour in polymers confined at the nanoscale. Nat Commun 2:1259/1–1259/7. doi:10.1038/ncomms1259

    Article  CAS  Google Scholar 

  27. Tsuruta H, Fujii Y, Kai N, Kataoka H, Ishizone T, Doi M, Morita H, Tanaka K (2012) Local conformation and relaxation of polystyrene at substrate interface. Macromolecules 45:4643–4649. doi:10.1021/ma3007202

    Article  CAS  Google Scholar 

  28. Gin P, Jiang NS, Liang C, Taniguchi T, Akgun B, Satija SK, Endoh MK, Koga T (2012) Revealed architectures of adsorbed polymer chains at solid-polymer melt interfaces. Phys Rev Lett 109:265501/1–265501/5. doi:10.1103/PhysRevLett.109.265501

    Article  CAS  Google Scholar 

  29. Paul DR, Yampol’skii YP (1993) Polymeric gas separation membranes. CRC Press, Boca Raton

    Google Scholar 

  30. Mittal KL (2001) Adhesion aspects of thin films, vol 1. VSP BV, Utrecht

    Google Scholar 

  31. Mittal KL (2013) Advances in contact angle, wettability and adhesion, vol 1. Wiley-Scrivener, Hoboken, New Jersey

    Google Scholar 

  32. Tanaka K, Takahara A, Kajiyama T (2000) Rheological analysis of surface relaxation process of monodisperse polystyrene films. Macromolecules 33:7588–7593. doi:10.1021/ma000406w

    Article  CAS  Google Scholar 

  33. Satomi N, Tanaka K, Takahara A, Kajiyama T, Ishizone T, Nakahama S (2001) Surface molecular motion of monodisperse α, ω-diamino-terminated and α, ω-dicarboxy-terminated polystyrenes. Macromolecules 34:8761–8767. doi:10.1021/ma010126w

    Article  CAS  Google Scholar 

  34. Tanaka K, Takahara A, Kajiyama T (1997) Effect of polydispersity on surface molecular motion of polystyrene films. Macromolecules 30:6626–6632. doi:10.1021/ma970057e

    Article  CAS  Google Scholar 

  35. Müller AHE, Matyjaszeuski K (2009) Controlled and living polymerizations. Wiley-VCH, Weinheim

    Google Scholar 

  36. Hariharan A, Kumar SK, Russell TP (1993) Reversal of the isotopic effect in the surface behavior of binary polymer blends. J Chem Phys 98:4163–4173. doi:10.1063/1.465024

    Article  CAS  Google Scholar 

  37. Tanaka K, Kajiyama T, Takahara A, Tasaki S (2002) A novel method to examine surface composition in mixtures of chemically identical two polymers with different molecular weights. Macromolecules 35:4702–4706. doi:10.1021/ma011960o

    Article  CAS  Google Scholar 

  38. Kajiyama T, Tanaka K, Takahara A (1997) Surface molecular motion of the monodisperse polystyrene films. Macromolecules 30:280–285. doi:10.1021/MA960582Y

    Article  CAS  Google Scholar 

  39. Tanaka K, Jiang X, Nakamura K, Takahara A, Kajiyama T, Ishizone T, Hirao A, Nakahama A (1998) Effect of chain end chemistry on surface molecular motion of polystyrene films. Macromolecules 31:5148–5149. doi:10.1021/ma9712561

    Article  CAS  Google Scholar 

  40. Bhatia QS, Pan DH, Koberstein JT (1988) Preferential surface-adsorption in miscible blends of polystyrene and poly(vinyl methyl ether). Macromolecules 21:2166–2175. doi:10.1021/ma00185a049

    Article  CAS  Google Scholar 

  41. Jones RAL, Norton LJ, Kramer EJ, Composto RJ, Stein RS, Russell TP, Mansour A, Karim A, Felcher GP, Rafailovich MH, Sokolov J, Zhao X, Schwarz SA (1990) The form of the enriched surface layer in polymer blends. Europhys Lett 12:41–46. doi:10.1209/0295-5075/12/1/008

    Article  CAS  Google Scholar 

  42. Tanaka K, Yoon J-S, Takahara A, Kajiyama T (1995) Ultrathinning-induced surface phase separation of polystyrene/poly(vinyl methyl ether) blend film. Macromolecules 28:934–938. doi:10.1021/ma00108a021

    Article  CAS  Google Scholar 

  43. Cahn JW (1977) Critical-point wetting. J Chem Phys 66:3667–3672. doi:10.1063/1.434402

    Article  CAS  Google Scholar 

  44. Schmidt I, Binder K (1985) Model-calculations for wetting transitions in polymer mixtures. J Phys 46:1631–1644. doi:10.1051/jphys:0198500460100163100

    Article  CAS  Google Scholar 

  45. Jones RAL, Kramer EJ, Rafailovich MH, Sokolov J, Schwarz SA (1989) Surface enrichment in an isotopic polymer blend. Phys Rev Lett 62:280–283. doi:10.1103/PhysRevLett.62.280

    Article  CAS  Google Scholar 

  46. Nishi T, Wang TT, Kwei TK (1975) Thermally induced phase separation behavior of compatible polymer mixtures. Macromolecules 8:227–234. doi:10.1021/ma60044a025

    Article  CAS  Google Scholar 

  47. Kumar CSSR (2010) Nanostructured thin films and surfaces. Wiley-VCH, Weinheim

    Google Scholar 

  48. Kawaguchi D, Tanaka K, Kajiyama T, Takahara A, Tasaki S (2003) Surface composition control via chain end segregation in blend films of polystyrene and poly(vinyl methyl ether). Macromolecules 36:6824–6830. doi:10.1021/ma034117u

    Article  CAS  Google Scholar 

  49. Tanaka K, Kawaguchi D, Yokoe Y, Kajiyama T, Takahara A, Tasaki S (2003) Surface segregation of chain ends in α, ω-fluoroalkyl-terminated polystyrenes films. Polymer 44:4171–4177. doi:10.1016/S0032-3861(03)00391-4

    Article  CAS  Google Scholar 

  50. Scherer GG (2008) Fuel cells I. Springer, Berlin

    Book  Google Scholar 

  51. Zaidi J, Matsuura T (2009) Polymer membranes for fuel cells. Springer, New York

    Google Scholar 

  52. Tanaka M, Mochizuki A, Ishii N, Motomura T, Hatakeyama T (2000) Study of blood compatibility with poly(2-methoxyethyl acrylate). Relationship between water structure and platelet compatibility in poly(2-methoxyethylacrylate-co-2-hydroxyethylmethacrylate). Biomacromolecules 3:36–41. doi:10.1021/bm010072y

    Article  Google Scholar 

  53. Susanto H, Ulbricht M (2008) High-performance thin-layer membranes for ultrafiltration hydrogel composite of natural organic matter. Water Res 42:2827–2835. doi:10.1016/j.watres.2008.02.017

    Article  CAS  Google Scholar 

  54. Varin KJ, Lin NH, Cohen Y (2013) Biofouling and cleaning effectiveness of surface nanostructured reverse osmosis membranes. J Membr Sci 446:472–481. doi:10.1016/j.memsci.2013.06.064

    Article  CAS  Google Scholar 

  55. Kizler TA, Flakoll PJ, Parker RA, Hakim RM (1994) Amino-acid and albumin losses during hemodialysis. Kidney Int 46:830–837. doi:10.1038/ki.1994.339

    Article  Google Scholar 

  56. Trivedi RH, Werner L, Apple DJ, Pandey SK, Izak AM (2002) Post cataract-intraocular lens (IOL) surgery opacification. Eye (Lond) 16:217–241. doi:10.1038/sj.eye.6700066

    Article  CAS  Google Scholar 

  57. Oner FH, Gunenc U, Ferliel ST (2000) Posterior capsule opacification after phacoemulsification: foldable acrylic versus poly(methyl methacrylate) intraocular lenses. J Cataract Refract Sug 26:722–726. doi:10.1016/S0886-3350(99)00456-3

    Article  CAS  Google Scholar 

  58. Yamasaki K, Juodkazis S, Matsuo S, Misawa H (2003) Three-dimensional micro-channels in polymers: one-step fabrication. Appl Phys A 77:371–373. doi:10.1007/s00339-003-2191-8

    Article  CAS  Google Scholar 

  59. Mahabadi KA, Rodriguez I, Haur SC, van Kan JA, Bettiol AA, Watt F (2006) Fabrication of PMMA micro- and nanofluidic channels by proton beam writing: electrokinetic and morphological characterization. J Micromech Microeng 16:1170–1180. doi:10.1088/0960-1317/16/7/009

    Article  CAS  Google Scholar 

  60. Ute K, Miyatake N, Hatada K (1995) Glass-transition temperature and melting temperature of uniform isotactic and syndiotactic poly(methyl methacrylate)s from 13mer to 50mer. Polymer 36:1415–1419. doi:10.1016/0032-3861(95)95919-R

    Article  CAS  Google Scholar 

  61. Grohens Y, Brogly M, Labbe C, David MO, Schultz J (1998) Glass transition of stereoregular poly(methyl methacrylate) at interfaces. Langmuir 14:2929–2932. doi:10.1021/la971397w

    Article  CAS  Google Scholar 

  62. Fujii Y, Akabori K, Tanaka K, Nagamura T (2007) Chain conformation effects on molecular motions at the surface of poly(methyl methacrylate) films. Polym J 39:928–993. doi:10.1295/polymj.PJ2006270

    Article  CAS  Google Scholar 

  63. Shen YR (1989) Surface-properties probed by 2nd-harmonic and sum-frequency generation. Nature 337:519–525. doi:10.1038/337519a0

    Article  CAS  Google Scholar 

  64. Tateishi Y, Kai N, Noguchi H, Uosaki K, Nagamura T, Tanaka K (2010) Local conformation of poly(methyl methacrylate) at nitrogen and water interfaces. Polym Chem 1:303–311. doi:10.1039/B9PY00227H

    Article  CAS  Google Scholar 

  65. Horinouchi A, Atarashi H, Fujii Y, Tanaka K (2012) Dynamics of water-induced surface reorganization in poly(methyl methacrylate) films. Macromolecules 45:4638–4642. doi:10.1021/ma3002559

    Article  CAS  Google Scholar 

  66. Horinouchi A, Tanaka K (2013) An effect of stereoregularity on the structure of poly(methyl methacrylate) at air and water interfaces. RSC Adv 3:9446–9452. doi:10.1039/c3ra40631h

    Article  CAS  Google Scholar 

  67. Sundararajan PR, Flory PJ (1974) Configurational characteristics of poly(methyl methacrylate). J Am Chem Soc 96:5025–5031. doi:10.1021/ja00823a002

    Article  CAS  Google Scholar 

  68. Klee D, Höcker H (1999) Polymers for biomedical applications: improvement of the interface compatibility. Adv Polym Sci 149:1–57. doi:10.1007/3-540-48838-3_1

    Article  CAS  Google Scholar 

  69. Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55. doi:10.1038/nbt1055

    Article  CAS  Google Scholar 

  70. Jagur-Grodzinski J (2006) Polymers for tissue engineering, medical devices, and regenerative medicine. Concise general review of recent studies. Polym Adv Technol 17:395–418. doi:10.1002/pat.729

    Article  CAS  Google Scholar 

  71. Richmond GL (2002) Molecular bonding and interactions at aqueous surfaces as probed by vibrational sum frequency spectroscopy. Chem Rev 102:2693–2724. doi:10.1021/cr0006876

    Article  CAS  Google Scholar 

  72. Du Q, Freysz E, Shen YR (1994) Surface vibrational spectroscopic studies of hydrogen bonding and hydrophobicity. Science 264:826–828. doi:10.1126/science.264.5160.826

    Article  CAS  Google Scholar 

  73. Kim J, Cremer PS (2000) IR − visible SFG investigations of interfacial water structure upon polyelectrolyte adsorption at the solid/liquid interface. J Am Chem Soc 122:12371–12372. doi:10.1021/ja003215h

    Article  CAS  Google Scholar 

  74. Oda Y, Horinouchi A, Kawaguchi D, Matsuno H, Kanaoka S, Aoshima S, Tanaka K (2014) An effect of side-chain carbonyl groups on the interface of vinyl polymers with water. Langmuir 30:1215–1219. doi:10.1021/la404802j

    Article  CAS  Google Scholar 

  75. Yonezumi M, Takaku R, Kanaoka S, Aoshima S (2008) Living cationic polymerization of α-methyl vinyl ethers using SnCl4. J Polym Sci Part A Polym Chem 46:2202–2211. doi:10.1002/pola.22555

    Article  CAS  Google Scholar 

  76. Aoshima S, Kanaoka S (2009) A renaissance in living cationic polymerization. Chem Rev 10:5245–5287. doi:10.1021/cr900225g

    Article  Google Scholar 

Download references

Acknowledgments

A part of results mentioned above has been obtained in collaboration with Prof. S. Nakahama, Prof. A. Hirao, and Prof. T. Ishizone (Tokyo Institute of Technology); Prof. S. Aoshima and Prof. S. Kanaoka (Osaka University); and Prof. T. Kajiyama, Prof. T. Nagamura, Prof. A. Takahara, Prof. H. Matsuno, Dr. Y. Fujii, Dr. H. Atarashi, and Dr. A. Horinouchi (Kyushu University). We deeply thank all of our collaborators. This research was partly supported by the Scientific Research on Innovative Area “New Polymeric Materials Based on Element-Blocks” (No. 25102535) program and by a Grant-in-Aid for Scientific Research (A) (No. 15H02183) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Tanaka .

Editor information

Editors and Affiliations

Abbreviations

Abbreviations

α,ω-PS(NH2)2 :

α,ω-Diamino-terminated polystyrene

α,ω-PS(COOH)2 :

α,ω-Dicarboxy-terminated polystyrene

α,ω-PS(Rf)2 :

Fluoroalkyl into both ends of polystyrene

DSC:

Differential scanning calorimetry

i-PMMA:

Isotactic-PMMA

PMMA:

Poly(methyl methacrylate)

PMPE:

Poly(methyl-2-propenyl ether)

PS:

Polystyrene

PVME:

Poly(vinyl methyl ether)

SFG:

Sum-frequency generation

SFM:

Scanning force microscopy

s-PMMA:

Syndiotactic PMMA

T g b :

Bulk glass transition temperature

T g s :

Surface glass transition temperature

XPS:

X-ray photoelectron spectroscopy

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Hirai, T., Oda, Y., Penaloza, D.P., Kawaguchi, D., Tanaka, K. (2015). Control of Surface Structure and Dynamics of Polymers Based on Precision Synthesis. In: Hadjichristidis, N., Hirao, A. (eds) Anionic Polymerization. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54186-8_19

Download citation

Publish with us

Policies and ethics