Skip to main content

Aquatic Adaptation and the Evolution of the Loss of Olfaction in Amniotes

  • Chapter
  • First Online:
Evolution and Senses

Part of the book series: SpringerBriefs in Biology ((BRIEFSBIOL))

  • 1252 Accesses

Abstract

Animals perceive surrounding environments using sensory modalities, and it is therefore hypothesized that transition to a new environment causes modification of the sensory systems. In this chapter, olfactory systems of three fully aquatic amniotes-odontocetes, mysticetes and hydrophiin sea snakes-are reviewed and compared in order to understand the aquatic adaptation and the evolution of olfactory sensory systems in amniotes. Reduction of the olfactory organs and the olfactory receptor genes has been confirmed in all three groups. However, the remaining olfactory capacities of the groups are completely different from each other: odontocetes have no sense of olfaction, whereas mysticetes still use the main olfactory system for smelling in air, and sea snakes use the accessory olfactory system for smelling underwater. These findings suggest that fully aquatic adaptation generally causes reduction of the olfactory systems which had been evolved to be optimized for life on land, but the olfactory capacities of different aquatic amniotes are not the same, and that both phylogenetic constraints and ecological demands affect the formation of olfactory capacities upon becoming aquatic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apesteguía S, Zaher H (2006) A Cretaceous terrestrial snake with robust hindlimbs and a sacrum. Nature 440:1037–1040

    Article  PubMed  Google Scholar 

  • Bajpai S, Thewissen JGM, Conley RW (2011) Cranial anatomy of middle Eocene Remingtonocetus (Cetacea, Mammalia) from Kutch, India. J Paleontol 85:703–718

    Article  Google Scholar 

  • Breathnach AS (1960) The cetacean central nervous system. Biol Rev 35:187–230

    Article  Google Scholar 

  • Buck L, Axel R (1991) A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–187

    Article  PubMed  CAS  Google Scholar 

  • Caldwell MW, Lee MSY (1997) A snake with legs from the marine Cretaceous of the Middle East. Nature 386:705–709

    Article  CAS  Google Scholar 

  • Cave AJE (1988) Note on olfactory activity in mysticetes. J Zool 214:307–311

    Article  Google Scholar 

  • Cogger HG, Heatwole HF (2006) Laticauda frontalis (de Vis, 1905) and Laticauda saintgironsi n.sp. from Vanuatu and New Caledonia (Serpentes: Elaphidae: Laticaudinae)—a new lineage of sea kraits? Rec Aust Mus 58:245–256

    Article  Google Scholar 

  • Cooper WE Jr (1996) Preliminary reconstructions of nasal chemosensory evolution in squamata. Amphib Reptil 17:395–415

    Article  Google Scholar 

  • Dehnhardt G (2002) Sensory systems. In: Hoelzel R (ed) Marine mammal biology. Blackwell, New York

    Google Scholar 

  • Firestein S (2001) How the olfactory system makes sense of scents. Nature 413:211–218

    Article  PubMed  CAS  Google Scholar 

  • Freitag J, Krieger J, Strotmann J, Breer H (1995) Two classes of olfactory receptors in Xenopus laevis. Neuron 15:1383–1392

    Article  PubMed  CAS  Google Scholar 

  • Freitag J, Ludwig G, Andreini I, Rössler P, Breer H (1998) Olfactory receptors in aquatic and terrestrial vertebrates. J Comp Physiol A 183:635–650

    Article  PubMed  CAS  Google Scholar 

  • Glusman G, Bahar A, Sharon D, Pilpel Y, White J, Lancet D (2000) The olfactory receptor gene superfamily: data mining, classification, and nomenclature. Mamm Genome 11:1016–1023

    Article  PubMed  CAS  Google Scholar 

  • Greene HW (1997) Snakes. University of California Press, Berkeley

    Google Scholar 

  • Halpern M (1992) Nasal chemical senses in reptiles: structure and function. In: Gans C, Crews D (eds) Biology of the reptilia, vol 18. University of Chicago Press, Chicago

    Google Scholar 

  • Hayden S, Bekaert M, Crider TA, Mariani S, Murphy WJ, Teeling EC (2010) Ecological adaptation determines functional mammalian olfactory subgenomes. Genome Res 20:1–9

    Article  PubMed  CAS  Google Scholar 

  • Heatwole H (1975) Attacks by sea snakes on divers. In: Dunson WA (ed) The biology of sea snakes. University Park Press, Baltimore

    Google Scholar 

  • Heatwole H, Busack S, Cogger H (2005) Geographic variation in sea kraits of the Laticauda colubrina complex (Serpentes: Elaphidae: Hydrophinae: Laticaudini). Herpetol Monogr 19:1–136

    Article  Google Scholar 

  • Hoch E (2000) Olfaction in whales: evidence from a young odontocete of the late Oligocene north sea. Hist Biol 14:67–89

    Google Scholar 

  • Kharin VE, Rödel MO, Hallermann J (2010) New records and distribution of a little-known sea krait Laticauda frontalis (de Vis, 1905) (Serpentes, Laticaudidae). Rus J Herpetol 17:285–289

    Google Scholar 

  • Kishida T (2008) Pattern of the divergence of olfactory receptor genes during tetrapod evolution. PLoS One 3:e2385

    Article  PubMed  Google Scholar 

  • Kishida T, Hikida T (2010) Degeneration patterns of the olfactory receptor genes in sea snakes. J Evol Biol 23:302–310

    Article  PubMed  CAS  Google Scholar 

  • Kishida T, Thewissen JGM (2012) Evolutionary changes of the importance of olfaction in cetaceans based on the olfactory marker protein gene. Gene 492:349–353

    Article  PubMed  CAS  Google Scholar 

  • Kishida T, Kubota S, Shirayama Y, Fukami H (2007) The olfactory receptor gene repertoires in secondary-adapted marine vertebrates: evidence for reduction of the functional proportions in cetaceans. Biol Lett 3:428–430

    Article  PubMed  CAS  Google Scholar 

  • Mackay-Sim A, Duvall D, Graves BM (1985) The West Indian manatee (Trichechus manatus) lacks a vomeronasal organ. Brain Behav Evol 27:186–194

    Article  PubMed  CAS  Google Scholar 

  • Margolis FL (1980) A marker protein for the olfactory chemoreceptor neuron. In: Bradshaw RA, Schneider DM (eds) Proteins of the nervous system. Raven, New York

    Google Scholar 

  • Marino L (2004) Cetacean brain evolution: multiplication generates complexity. Int J Comp Psychol 17:1–16

    Google Scholar 

  • McGowen MR, Clark C, Gatesy J (2008) The vestigial olfactory receptor subgenome of odontocete whales: phylogenetic congruence between gene-tree reconstruction and supermatrix methods. Syst Biol 57:574–590

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Niimura Y, Nozawa M (2008) The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat Rev Genet 9:951–963

    Article  PubMed  CAS  Google Scholar 

  • Nevitt GA (1999) Olfactory foraging in Antarctic seabirds: a species-specific attraction to krill odors. Mar Ecol Prog Ser 177:235–241

    Article  Google Scholar 

  • Nevitt GA (2008) Sensory ecology on the high seas: the odor world of the procellariiform sea birds. J Exp Biol 211:1706–1713

    Article  PubMed  Google Scholar 

  • Nevitt GA, Haberman K (2003) Behavioral attraction of Leach’s storm-petrels (Oceanodroma leucorrboa) to dimethyl sulfide. J Exp Biol 206:1497–1501

    Article  PubMed  CAS  Google Scholar 

  • Nevitt GA, Veit RR, Kareiva P (1995) Dimethyl sulphide as a foraging cue for Antarctic procellariiform seabirds. Nature 376:680–682

    Article  CAS  Google Scholar 

  • Niedwiedzki G, Szrek P, Narkiewicz K, Narkiewicz M, Ahlberg PE (2010) Tetrapod trackways from the early Middle Devonian period of Poland. Nature 463:43–48

    Article  Google Scholar 

  • Niimura Y (2009) On the origin and evolution of vertebrate olfactory receptor genes: comparative genome analysis among 23 chordate species. Genome Biol Evol 1:34–44

    Article  PubMed  Google Scholar 

  • Niimura Y, Nei M (2005) Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. Proc Natl Acad Sci USA 102:6039–6044

    Article  PubMed  CAS  Google Scholar 

  • Niimura Y, Nei M (2006) Evolutionary dynamics of olfactory and other chemosensory receptor genes in vertebrates. J Hum Genet 51:505–517

    Article  PubMed  CAS  Google Scholar 

  • Norris KS (1991) Dolphin days: the life and times of the spinner dolphin. W. W. Norton, New York

    Google Scholar 

  • Norris KS, Dohl TP (1980) The structure and function of cetacean schools. In: Herman LM (ed) Cetacean behavior. Wiley, New York

    Google Scholar 

  • Philström H (2008) Comparative anatomy and physiology of chemical senses in aquatic mammals. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold: adaptations in secondarily aquatic vertebrates. University of California Press, Berkeley

    Google Scholar 

  • Pirlot P, Kamiya T (1985) Qualitative and quantitative brain morphology in the sirenian Dugong dugong Erxl. J Zoolog Syst Evol Res 23:147–155

    Article  Google Scholar 

  • Reisert J, Yau KW, Margolis FL (2007) Olfactory marker protein modulates the cAMP kinetics of the odour-induced response in cilia of mouse olfactory receptor neurons. J Physiol 585:731–740

    Article  PubMed  CAS  Google Scholar 

  • Sanders KL, Lee MSY, Leys R, Foster R, Koegh JS (2008) Molecular phylogeny and divergence dates for Australasian elapids and sea snakes (hydrophiinae): evidence from seven genes for rapid evolutionary radiatins. J Evol Biol 21:682–695

    Article  PubMed  CAS  Google Scholar 

  • Schwenk K (1995) Of tongues and noses: chemoreception in lizards and snakes. Trends Ecol Evol 10:7–12

    Article  PubMed  CAS  Google Scholar 

  • Schwenk K (2008) Comparative anatomy and physiology of chemical senses in nonavian aquatic reptiles. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold: adaptations in secondarily aquatic vertebrates. University of California Press, Berkeley

    Google Scholar 

  • Shine R (2005) All at sea: aquatic life modifies mate-recognition modalities in sea snakes (Emydocephalus annulatus, hydrophiidae). Behav Ecol Sociobiol 57:591–598

    Article  Google Scholar 

  • Shine R, Shine T, Shine B (2003) Intraspecific habitat partitioning by the sea snake Emydocephalus annulatus (Serpentes, Hydrophiidae): the effect of sex, body size and colour pattern. Biol J Linn Soc 80:1–10

    Article  Google Scholar 

  • Shine R, Bonnet X, Elphick MJ, Barrott EG (2004) A novel foraging mode in snakes: browsing by the sea snake Emydocephalus annulatus (Serpentes, Hydrophiidae). Funct Ecol 18:16–24

    Article  Google Scholar 

  • Slowinski JB, Keogh JS (2000) Phylogenetic relationships of elapid snakes based on cytochrome b mtDNA sequences. Mol Phylogenet Evol 15:157–164

    Article  PubMed  CAS  Google Scholar 

  • Thewissen JGM, Bajpai S (2009) New skeletal material of Andrewsiphius and Kutchicetus, two Eocene cetaceans from India. J Paleontol 83:635–663

    Article  Google Scholar 

  • Thewissen JGM, Hussain ST (1998) Systematic review of Pakicetidae, early and middle Eocene Cetacea (Mammalia) from Pakistan and India. Bull Carnegie Mus Nat Hist 34:220–238

    Google Scholar 

  • Thewissen JGM, Nummela S (2008) Introduction: on becoming aquatic. In: Thewissen JGM, Nummela S (eds) Sensory evolution on the threshold: adaptations in secondarily aquatic vertebrates. University of California Press, Berkeley

    Google Scholar 

  • Thewissen JGM, Cooper LN, Clementz MT, Bajpai S, Tiwari BN (2007) Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature 450:1190–1194

    Article  PubMed  CAS  Google Scholar 

  • Thewissen JGM, Cooper LN, George JC, Bajpai S (2009) From land to water: the origin of whales, dolphins, and porpoises. Evol Educ Outreach 2:272–288

    Article  Google Scholar 

  • Thewissen JGM, George J, Rosa C, Kishida T (2011) Olfaction and brain size in the bowhead whale (Balaena mysticetus). Mar Mamm Sci 27:282–294

    Article  Google Scholar 

  • Tyack PL (2000) Functional aspects of cetacean communication. In: Mann J, Conner RC, Tyack PL, Whitehead H (eds) Cetacean societies. The University of Chicago Press, Chicago

    Google Scholar 

  • Uhen MD (2004) Form, function and anatomy of Dorudon atrox (Mammalia, Cetacea): an archaeocete from the middle to late Eocene of Egypt. Univ Mich Pap Paleontol 34:1–222

    Google Scholar 

  • Uhen MD (2007) Evolution of marine mammals: back to the sea after 300 million years. Anat Rec 290:514–522

    Article  Google Scholar 

Download references

Acknowledgements

I thank the editors, especially Noriko Funayama and Kiyokazu Agata, for inviting me to contribute to this volume; Tsutomu Hikida for helpful comments; Elizabeth Nakajima for checking the English of the text. This work was financially supported in part by Global COE program (A06) of Kyoto University, and by MEXT KAKENHI (22770082) to TK.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Shichida, Y., Yamashita, T., Imai, H., Kishida, T. (2013). Aquatic Adaptation and the Evolution of the Loss of Olfaction in Amniotes. In: Evolution and Senses. SpringerBriefs in Biology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54222-3_3

Download citation

Publish with us

Policies and ethics