Skip to main content

Ultra-Fine-Grained Steel: Relationship Between Grain Size and Impact Properties

  • Chapter
  • First Online:
Analysis of Fracture Toughness Mechanism in Ultra-fine-grained Steels

Part of the book series: NIMS Monographs ((NIMSM))

  • 791 Accesses

Abstract

The study on the relationship between the effective grain size, d EFF, and ductile-to-brittle transition temperature in impact tests indicated that the microstructure of ultra-fine-grained ferrite/cementite (F/C) belongs to the same group composed of quenched (Q) and quench-and-tempered (QT) microstructures, while the microstructures of ferrite/pearlite (F/P) belongs to a different group. According to the estimated fracture stress, ultra-fine- grained ferrite/cementite (UGF/C) exhibited the highest fracture stress among the four microstructures. The UGF/C steel has excellent fracture toughness because of its characteristic small d EFF and high surface energy of fracture in comparison to other steel structures. The low absorbed energy with a ductile dimple fracture in the lower shelf region was found to be a characteristic feature of the UGF/C steel. In ultra-fine-grained steel, a transition from an energy-absorbent ductile mode to an energy-absorbent brittle mode existed in impact tests and some dense and small-sized dimples were observed in the lower shelf energy region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. Hanamura, F. Yin, K. Nagai, Ductile-brittle transition temperature of ultrafine ferrite/cementite microstructure in a low carbon steel controlled by effective grain size. ISIJ Int. 44, 610–617 (2004)

    Article  Google Scholar 

  2. M. Zhao, T. Hanamura, H. Qui, H. Dong, K. Yang, K. Nagai, Low absorbed energy ductile dimple fracture in lower shelf region in an ultrafine grained ferrite/cementite steel. Metall. Mater. Trans. A 37A(9), 2897–2900 (2006)

    Article  Google Scholar 

  3. F.B. Pickering, T. Gladman, Metallurgical developments in carbon steels. ISI Spec. Rep. 81, 10 (1963)

    Google Scholar 

  4. A.H. Cottrell, Theory of brittle fracture in steel and similar metals. Trans. Metall. Soc. 212, 192 (1958)

    Google Scholar 

  5. N.J. Petch, The ductile to brittle transition in the fracture of alpha-iron. Philos. Mag. 3, 1089 (1958)

    Article  Google Scholar 

  6. A.N. Stroh, A theory of the fracture of metals. Adv. Phys. 6(24), 418 (1957)

    Article  Google Scholar 

  7. T. Hanamura, T. Hayashi, H. Nakajima, S. Torizuka, K. Nagai, in Second International Conference on Processing Materials for Properties, ed. by B. Mishra, C. Yamauchi (TMS, Warrendale, 2000), p. 206

    Google Scholar 

  8. W.C. Leslie, Iron and its dilute substitutional solid solutions. Metall. Trans. 3, 5–26 (1972)

    Article  Google Scholar 

  9. J.M. Hodge, R.D. Manning, H.M. Reichhold, The effect of ferrite grain size on notch toughness. Trans. AIME 185, 185–233 (1949)

    Google Scholar 

  10. S. Matsuda, T. Inoue, M. Ogasawara, The fracture of tempered martensite. Trans. Jpn. Inst. Met. 9, 343 (1968)

    Article  Google Scholar 

  11. S. Matsuda, T. Inoue, M. Ogasawara, The fracture of a low carbon tempered martensite. Trans. Jpn. Inst. Met 11, 36 (1970)

    Article  Google Scholar 

  12. F. Terasaki, H. Ohtani, The microstructure and toughness of high tensile strength steels. Tetsu-to-Hagané 58, 436 (1972)

    Google Scholar 

  13. F. Terasaki, H. Ohtani, Trans. Iron Steel Inst. Jpn. 12, 45 (1972)

    Google Scholar 

  14. C.D. Beachem, Orientation of cleavage facets in tempered martensite (quasi- cleavage) by single surface trace analysis. Metall. Trans. 4, 1999–2000 (1973)

    Article  Google Scholar 

  15. S. Matsuda, T. Inoue, H. Mimura, Y. Okamura, Trans. Iron Steel Inst. Jpn. 12, 325 (1972)

    Google Scholar 

  16. C.D. Beachem, Fracture, vol. I (Academic Press, New York, 1968), p. 305

    Google Scholar 

  17. F. Yin, T. Hanamura, T. Inoue, K. Nagai, Characteristic microstructure features influencing the mechanical behavior of warm-rolled ultrafine low-carbon steels, in Seventh Workshop on the Ultra-Steel: Requirements from New Design of Constructions, NIMS, Tsukuba, p. 288 (2003)

    Google Scholar 

  18. F. Terasaki, H. Ohtani, Tetsu-to-Hagané 58, 1067 (1972)

    Google Scholar 

  19. K. Nagai, O. Umezawa, Report of study committee on effect of impurities due to scrap on steel products, Materials Science of Tramp Elements, ISIJ, Tokyo, p. 70 (1997)

    Google Scholar 

  20. A.A. Griffith, Philos. Trans. R. Soc. (London) A, A221, 163 (1920)

    Google Scholar 

  21. N. Tsuchida, Y. Tomoda, K. Nagai, ISIJ Int. 42, 1594 (2002)

    Article  Google Scholar 

  22. A. Kelly et al., Philos. Mag. 15, 567 (1967)

    Article  Google Scholar 

  23. T. Yokobori, Tech. Rep. Tohoku Univ. 29, 167 (1964)

    Google Scholar 

  24. H. Yagi, N. Tsuji, Y. Saito, Tetsu-to-Hagané 86, 349 (2000)

    Google Scholar 

  25. A. Ohmori, S. Torizuka, K. Nagai, K. Yamada, Y. Kogo, Tetsu-to-Hagané 88, 857 (2002)

    Google Scholar 

  26. N. Tsuchida, Y. Tomoda, K. Nagai, Tetsu-to-Hagané 89, 1170 (2003)

    Google Scholar 

  27. K. Nagai, Ultrafine-grained ferrite steel with dispersed cementite particles. J. Mater. Proc. Technol. 117(3), 329–332 (2001)

    Article  Google Scholar 

  28. L. Storojeva, D. Ponge, R. Kaspar, D. Raabe, Development of microstructure and texture of medium carbon steel during heavy warm deformation. Acta Mater. 52(8), 2209–2220 (2004)

    Article  Google Scholar 

  29. R. Song, D. Ponge, D. Raabe, R. Kaspar, Microstructure and crystallographic texture of an ultrafine grained C–Mn steel and their evolution during warm deformation and annealing. Acta Mater. 53(3), 845–858 (2005)

    Article  Google Scholar 

  30. L. Toth, P. Rossmanith, Historical background and evaluation of the Charpy test, in Charpy Centenary Conference, Poitiers, France, 2–5 October 2001, p. 1. European Structural Integrity Society, Paris (2001)

    Google Scholar 

  31. T. Gladman, The Physical Metallurgy of Microalloyed Steels (The Institute of Materials, London, 2002), p. 57

    Google Scholar 

  32. M. Zhao, T. Hanamura, H. Qui, K. Nagai, K. Yang, Dependence of strength and strength-elongation balance on the volume fraction of cementite particles in ultrafine grained ferrite/cementite steels. Scripta Mater. 54(7), 1385–1389 (2006)

    Article  Google Scholar 

  33. G. Krauss, Steels Heat Treatment and Processing Principles (ASM International, Materials Park, 1990), pp. 133–139

    Google Scholar 

  34. F.B. Pickering, T. Gladman, Iron and Steel Institute Special Report No. 81, Iron and Steel Institute, Tokyo, p. 10 (1963)

    Google Scholar 

  35. T. Hanamura, F. Yin, K. Nagai, Iron Steel Inst. Jpn. Int. 44, 610–617 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Hanamura .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 National Institute for Materials Science, Japan. Published by Springer Japan

About this chapter

Cite this chapter

Hanamura, T., Qiu, H. (2014). Ultra-Fine-Grained Steel: Relationship Between Grain Size and Impact Properties. In: Analysis of Fracture Toughness Mechanism in Ultra-fine-grained Steels. NIMS Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54499-9_3

Download citation

Publish with us

Policies and ethics