Skip to main content

Hemodynamics in Physio- and Pathological Vessels

  • Chapter
  • First Online:
Vascular Engineering

Abstract

Hemodynamics can be defined as the part of cardiovascular physiology dealing with the forces that drive the blood circulation in mammalian cardiovascular systems. A cardiovascular system is a series of blood vessels connected to the heart. Pressure generated in the heart propels blood through the system continuously. In this chapter, basic hemodynamics essential to interpretation of arterial disease in the aspect of bio-fluid mechanics are introduced. Hemodynamics in bio-fluid mechanics plays an important role in better understanding of clinical and pathological observations and in developing new methods for diagnosis in connection with mathematical models. In particular, hemodynamic factors, such as Wall Shear Stress and Oscillatory Shear Index, correlate substantially with the generation and progression of arterial disease including intimal thickening and atherosclerosis. In the larger vessels, such as the carotid artery, interaction between the vessel wall and the blood flow affects the distribution of hemodynamic factors.

The main scope of this chapter is to introduce hemodynamic applications of mathematical modeling of fluid mechanics. Mathematical models of fluid mechanics are used to quantify the hemodynamic factors and their relationship to vascular disease. The majority of all cardiovascular diseases and disorders are related to systemic hemodynamic dysfunction. Recent studies of cardiovascular diseases in relation to hemodynamic dysfunction are also briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ajmani RS (1997) Hypertension and hemorheology. Clin Hemorheol Microcirc 17:397–420

    CAS  PubMed  Google Scholar 

  • Bor-Kucukkatay M, Yalcin O, Gokalp O et al (2000) Red blood cell rheological alterations in hypertension induced by chronic inhibition of nitric oxide synthesis in rats. Clin Hemorheol Microcirc 22:267–275

    Google Scholar 

  • Chien S (2003) Molecular mechanical bases of focal lipid accumulation in arterial wall. Prog Biophys Mol Biol 83:131–151

    Article  CAS  PubMed  Google Scholar 

  • Chien S, Dormandy J et al (eds) (1987) Clinical hemorheology. Martinus Nijhoff Publishers, Dordrecht

    Google Scholar 

  • Clark JM, Glagov S (1985) Transmural organization of the arterial media: the lamellar unit revisited. Arterioscler Thromb Vasc Biol 5:19–34. doi:10.1161/01.ATV.5.1.19

    Article  CAS  Google Scholar 

  • Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Huang Y, Jan KM, Rumschitzki D et al (1998) Structural changes in rat aortic intima due to transmural pressure. Trans ASME J Biomech Eng 120:476–483

    Article  CAS  Google Scholar 

  • Kesmarky G, Toth K, Habon L et al (1998) Hemorheological parameters in coronary artery disease. Clin Hemorheol Microcirc 18:245–251

    CAS  PubMed  Google Scholar 

  • Kleinstreuer C (2006) Biofluid dynamics: principles and selected applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Kohler TR, Jawien A (1992) Flow affects development of intimal hyperplasia after arterial injury in rats. Arterioscler Thromb 12:963–971

    Article  CAS  PubMed  Google Scholar 

  • Ku DN, Giddens DP et al (1985) Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis 5:293–302

    Article  CAS  PubMed  Google Scholar 

  • Levick JR (1987) Relation between hydraulic resistance and composition of the interstitium. Adv Microcirc 13:124–133

    Google Scholar 

  • Lipowsky HH (1995) Shear stress in the circulation. In: Bevan JA et al (eds) Flow-dependent regulation of vascular function. Oxford University Press, New York

    Google Scholar 

  • McMillan DE (1993) Hemorheological studies in the diabetes control and complications trial. Clin Hemorheol 13:147–154

    Google Scholar 

  • Merrill EW (1969) Rheology of blood. Physiol Rev 49(4):863–888

    Google Scholar 

  • Morris CL, Rucknagel DL et al (1989) Evaluation of the yield stress of normal blood as a function of fibrinogen concentration and hematocrit. Microvasc Res 37(3):323–338

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishnan S, Grebe R et al (1999) Aggregation of shape altered erythrocytes: an in vitro study. Curr Sci 77:805–808

    Google Scholar 

  • Shi ZD, Tarbell JM (2011) Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts. Ann Biomed Eng 39(6):1608–1619

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi ZD, Ji XY, Qazi H et al (2009) Interstitial flow promotes vascular fibroblast, myofibroblast, and smooth muscle cell motility in 3-D collagen I via upregulation of MMP-1. Am J Physiol Heart Circ Physiol 297(4):H1225–H1234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi ZD, Wang H et al (2011) Heparan sulfate proteoglycans mediate interstitial flow mechanotransduction regulating MMP-13 expression and cell motility via FAK-ERK in 3D collagen. PLos One. doi:10.1371/journal.pone.0015956

    Google Scholar 

  • Shul’man ZP, Mansurov VA et al (2006) Rheological changes in the blood and plasma of patients with myocardial ischemia and diabetes mellitus and dysfunction of their endothelium. J Eng Phys Thermophys 79(1):99–104

    Article  Google Scholar 

  • Tada S, Ozono H (2011) Computational study of LDL mass transport in the artery wall. J Biorheol 25(1–2):27–35

    Article  Google Scholar 

  • Tada S, Tarbell JM (2000) Interstitial flow through the internal elastic lamina affects shear stress on arterial smooth muscle cells. Am J Physiol Heart Circ Physiol 278:H1589–H1597

    CAS  PubMed  Google Scholar 

  • Tada S, Tarbell JM (2002) Flow through internal elastic lamina affects shear stress on smooth muscle cells (3D simulations). Am J Physiol Heart Circ Physiol 282:H576–H584

    Article  CAS  PubMed  Google Scholar 

  • Tada S, Tarbell JM (2005) A computational study of flow in a compliant carotid bifurcation – stress phase angle correlation with shear stress. Ann Biomed Eng 33:1202–1212

    Article  CAS  PubMed  Google Scholar 

  • Tarbell JM, Shi ZD (2013) Effect of the glycocalyx layer on transmission of interstitial flow shear stress to embedded cells. Biomech Model Mechanobiol 12(1):111–121. doi:10.1007/s10237-012-0385-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Tarbell JM, Shi ZD et al (2014) Fluid mechanics, arterial disease, and gene expression. Annu Rev Fluid Mech 46:591–614. doi:10.1146/annurev-fluid-010313-141309

    Article  PubMed  PubMed Central  Google Scholar 

  • Tedgui A, Lever MJ (1984) Filtration through damaged and undamaged rabbit thoracic aorta. Am J Physiol Heart Circ Physiol 247:H784–H791

    CAS  Google Scholar 

  • Thomas JB, Milner JS et al (2002) On the influence of vessel planarity on local hemodynamics at the human carotid bifurcation. Biorheology 39:443–448

    PubMed  Google Scholar 

  • Wang DM, Tarbell JM (1995) Modeling interstitial flow in an artery wall allows estimation of wall shear stress on smooth muscle cells. Trans ASME J Biomech Eng 117:358–363

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Tada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Tada, S., Tarbell, J.M. (2016). Hemodynamics in Physio- and Pathological Vessels. In: Tanishita, K., Yamamoto, K. (eds) Vascular Engineering. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54801-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54801-0_4

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54800-3

  • Online ISBN: 978-4-431-54801-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics