Skip to main content

Dynamics and Glass Transition of Aqueous Solutions of Molecular Liquid, Polymer, and Protein Studied by Broadband Dielectric Spectroscopy

  • Chapter
Nano/Micro Science and Technology in Biorheology

Abstract

Broadband dielectric spectroscopy (BDS) is the most powerful tool for observing the dynamics of molecules in an extremely wide frequency range between 1 µHz and 50 GHz or more, i.e., the time window between megaseconds and picoseconds that covers the dynamics of solids to liquids. The progress of the investigations using BDS on the dynamics of aqueous solutions of hydrophilic molecular liquids, polymers, and proteins from solid to liquid states in this decade is presented in terms of the glass transition. The relaxation process, ν-relaxation, originating from the local reorientational motion of water molecules and the α-relaxation originating from the cooperative motion of hydrated solute are strongly related. The universalities of the dynamical hierarchy from fast and local motion of water molecules to slow and global cooperative motion of hydrated guest molecules extending over a wide range of glass transition temperature are successfully explained by applying the theoretical interpretation of mixtures of van der Waals liquids using the coupling model. More complicated partially crystallized aqueous protein solutions are also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stockmayer WH (1967) Dielectric dispersion in solutions of flexible polymers. Pure Appl Chem 15(3–4):539–554. doi:10.1351/pac196715030539

    Google Scholar 

  2. Mashimo S (1976) Dielectric study of chain motion of poly(p-chlorostyrene) in dilute solution. Macromolecules 9(1):91–97. doi:10.1021/ma60049a018

    Article  CAS  Google Scholar 

  3. Adachi K, Fujihara I, Ishida Y (1975) Diluent effects on molecular motions and glass transition in polymers. I. Polystyrene–toluene. J Polym Sci Polym Phys Ed 13(11):2155–2171. doi:10.1002/pol.1975.180131108

    Article  CAS  Google Scholar 

  4. Ono K, Ueda K, Yamamoto M (1994) Local chain dynamics of poly(cis-1,4-isoprene) in dilute solutions studied by the fluorescence depolarization method. Polym J 26:1345–1351. doi:10.1295/polymj.26.1345

    Article  CAS  Google Scholar 

  5. Mashimo S (1977) Effect of diluent on dielectric relaxation time of polymers. J Chem Phys 67(6):2651–2658. doi:10.1063/1.435178

    Article  CAS  Google Scholar 

  6. Adolf DB, Ediger MD, Kitano T, Ito K (1992) Viscosity dependence of the local segmental dynamics of anthracene-labeled polyisoprene in dilute solution. Macromolecules 25(2):867–872. doi:10.1021/ma00028a055

    Article  CAS  Google Scholar 

  7. Kaatze U (1975) Dielectric relaxation in aqueous solutions of polyvinylpyrrolidone. Adv Mol Relax Process 7:71–85

    Article  CAS  Google Scholar 

  8. Kaatze U, Gottmann O, Podbielski R, Pottel R, Terveer U (1978) Dielectric relaxation in aqueous solutions of some oxygen-containing linear hydrocarbon polymers. J Phys Chem 82(1):112–120. doi:10.1021/j100490a025

    Article  CAS  Google Scholar 

  9. Jain SK, Johari GP (1988) Dielectric studies of molecular motions in the glassy states of pure and aqueous poly(vinylpyrrolidone). J Phys Chem 92(20):5851–5854. doi:10.1021/j100331a061

    Article  CAS  Google Scholar 

  10. Shinyashiki N, Asaka N, Mashimo S, Yagihara S (1990) Dielectric study on dynamics of water in polymer matrix using a frequency range 10[sup 6]–10[sup 10] Hz. J Chem Phys 93(1):760–764. doi:10.1063/1.459526

    Article  CAS  Google Scholar 

  11. Shinyashiki N, Imoto D, Yagihara S (2007) Broadband dielectric study of dynamics of polymer and solvent in poly(vinyl pyrrolidone)/normal alcohol mixtures. J Phys Chem B 111(9):2181–2187. doi:10.1021/jp065414e

    Article  CAS  PubMed  Google Scholar 

  12. Shinyashiki N, Sengwa RJ, Tsubotani S, Nakamura H, Sudo S, Yagihara S (2006) Broadband dielectric study of dynamics of poly(vinyl pyrrolidone)-ethylene glycol oligomer blends. J Phys Chem A 110(15):4953–4957. doi:10.1021/jp0605193

    Article  CAS  PubMed  Google Scholar 

  13. Williams G, Watts DC (1970) Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans Faraday Soc 66:80–85. doi:10.1039/tf9706600080

    Article  CAS  Google Scholar 

  14. Havriliak S, Negami S (1967) A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 8:161–210

    Article  CAS  Google Scholar 

  15. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9(4):341–351. doi:10.1063/1.1750906

    Article  CAS  Google Scholar 

  16. Shinyashiki N, Miyara M, Nakano S, Yamamoto W, Ueshima M, Imoto D, Sasaki K, Kita R, Yagihara S (2013) Dielectric relaxation strength and magnitude of dipole moment of poly(vinyl pyrrolidone)in polar solutions. J Mol Liq 181:110–114. doi:10.1016/j.molliq.2013.02.020

    Article  CAS  Google Scholar 

  17. Shinyashiki N, Spanoudaki A, Yamamoto W, Nambu E, Yoneda K, Kyritsis A, Pissis P, Kita R, Yagihara S (2011) Segmental relaxation of hydrophilic poly(vinylpyrrolidone) in chloroform studied by broadband dielectric spectroscopy. Macromolecules 44(7):2140–2148. doi:10.1021/Ma102394s

    Article  CAS  Google Scholar 

  18. Vogel H (1921) The law of the relation between the viscosity of liquids and the temperature. Phys Z 22:645–646

    CAS  Google Scholar 

  19. Fulcher GS (1925) Analysis if recent measurements of the viscosity of glasses. J Am Ceram Soc 8(339–355):789–794

    Article  CAS  Google Scholar 

  20. Tammann G, Hesse W (1926) Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Z Anorg Allg Chem 156(1):245–257. doi:10.1002/zaac.19261560121

    Article  Google Scholar 

  21. Kremer F, Schönhals A (eds) (2003) Broadband dielectric spectroscopy. Springer, Berlin/Heidelberg. doi:10.1007/978-3-642-56120-7

  22. Richert R, Blumen A (1994) Disorder effects on relaxational processes glasses, polymers, proteins. Springer, Berlin/Heidelberg. doi:10.1007/978-3-642-78576-4

  23. Böhmer R, Angell C (1992) Correlations of the nonexponentiality and state dependence of mechanical relaxations with bond connectivity in Ge-As-Se supercooled liquids. Phys Rev B 45(17):10091–10094. doi:10.1103/PhysRevB.45.10091

    Article  Google Scholar 

  24. Plazek DJ, Ngai KL (1991) Correlation of polymer segmental chain dynamics with temperature-dependent time-scale shifts. Macromolecules 24(5):1222–1224. doi:10.1021/ma00005a044

    Article  CAS  Google Scholar 

  25. Johari GP, Goldstein M (1970) Viscous liquids and the glass transition. II Secondary relaxations in glasses of rigid molecules. J Chem Phys 53(6):2372–2388. doi:10.1063/1.1674335

    Article  CAS  Google Scholar 

  26. Johari GP, Goldstein M (1971) Viscous liquids and the glass transition. III Secondary relaxations in aliphatic alcohols and other nonrigid molecules. J Chem Phys 55(9):4245–4252. doi:10.1063/1.1676742

    Article  CAS  Google Scholar 

  27. Ngai KL, Paluch M (2004) Classification of secondary relaxation in glass-formers based on dynamic properties. J Chem Phys 120(2):857–873. doi:10.1063/1.1630295

    Article  CAS  PubMed  Google Scholar 

  28. Tsang KY, Ngai KL (1996) Relaxation in interacting arrays of oscillators. Phys Rev E 54(4):R3067–R3070. doi:10.1103/PhysRevE.54.R3067

    Article  CAS  Google Scholar 

  29. Ngai KL, Tsang KY (1999) Similarity of relaxation in supercooled liquids and interacting arrays of oscillators. Phys Rev E 60(4):4511–4517. doi:10.1103/PhysRevE.60.4511

    Article  CAS  Google Scholar 

  30. Ngai KL (2001) Coupling model explanation of salient dynamic properties of glass-forming substances. IEEE Trans Dielectr Electr Insul 8(3):329–344. doi:10.1109/94.933340

    Article  CAS  Google Scholar 

  31. Ngai KL, Rendell RW (1997) Basic physics of the coupling model: direct experimental evidences. In: Supercooled liquids advances and novel applications. ACS symposium series, vol 676. American Chemical Society, Washington, DC pp 45–66. doi:10.1021/bk-1997-0676.ch004

  32. Ngai KL (2003) An extended coupling model description of the evolution of dynamics with time in supercooled liquids and ionic conductors. J Phys Condens Matter 15(11):S1107–S1125. doi:10.1088/0953-8984/15/11/332

    Article  CAS  Google Scholar 

  33. Ngai KL, Paluch M (2003) Inference of the evolution from caged dynamics to cooperative relaxation in glass-formers from dielectric relaxation data. J Phys Chem B 107(28):6865–6872. doi:10.1021/jp026611q

    Article  CAS  Google Scholar 

  34. Hensel-Bielowka S, Ziolo J, Paluch M, Roland CM (2002) The effect of pressure on the structural and secondary relaxations in 1,1′-bis (p-methoxyphenyl) cyclohexane. J Chem Phys 117(5):2317. doi:10.1063/1.1488593

    Article  CAS  Google Scholar 

  35. Sudo S, Shimomura M, Shinyashiki N, Yagihara S (2002) Broadband dielectric study of α−β separation for supercooled glycerol−water mixtures. J Non-Cryst Solids 307–310:356–363. doi:10.1016/S0022-3093(02)

    Article  Google Scholar 

  36. Murthy SSN (2000) Experimental study of the dynamics of water and the phase behavior of the supercooled aqueous solutions of propylene glycol, glycerol, poly(ethylene glycol)s, and poly(vinylpyrrolidone). J Phys Chem B 104(29):6955–6962. doi:10.1021/jp9931915

    Article  CAS  Google Scholar 

  37. Sudo S, Shinyashiki N, Yagihara S (2001) The dielectric relaxation of supercooled ethyleneglycol-water mixtures. J Mol Liq 90(1–3):113–120. doi:10.1016/S0167-7322(01)00113-1

    Article  CAS  Google Scholar 

  38. Murthy SSN (1997) Phase behavior of the supercooled aqueous solutions of dimethyl sulfoxide, ethylene glycol, and methanol as seen by dielectric spectroscopy. J Phys Chem B 101(31):6043–6049. doi:10.1021/jp970451e

    Article  CAS  Google Scholar 

  39. Sudo S, Shimomura M, Saito T, Kashiwagi T, Shinyashiki N, Yagihara S (2002) Dielectric study on α- and β-processes in supercooled diethyleneglycol– and pentaethyleneglycol–water mixtures. J Non-Cryst Solids 305(1–3):197–203. doi:10.1016/S0022-3093(02)01094-3

    Article  CAS  Google Scholar 

  40. Sudo S, Tsubotani S, Shimomura M, Shinyashiki N, Yagihara S (2004) Dielectric study of the alpha and beta processes in supercooled ethylene glycol oligomer-water mixtures. J Chem Phys 121(15):7332–7340. doi:10.1063/1.1796232

    Article  CAS  PubMed  Google Scholar 

  41. Sudo S, Shinyashiki N, Arima Y, Yagihara S (2008) Broadband dielectric study on the water-concentration dependence of the primary and secondary processes for triethyleneglycol-water mixtures. Phys Rev E 78(1):011501–011507. doi:10.1103/PhysRevE.78.011501

    Article  Google Scholar 

  42. Sudo S, Shimomura M, Kanari K, Shinyashiki N, Yagihara S (2006) Broadband dielectric study of the glass transition in poly(ethyleneglycol)-water mixture. J Chem Phys 124(4):044901. doi:10.1063/1.2149860

    Article  CAS  PubMed  Google Scholar 

  43. Tyagi M, Murthy SS (2006) Dynamics of water in supercooled aqueous solutions of glucose and poly(ethylene glycol)s as studied by dielectric spectroscopy. Carbohydr Res 341(5):650–662. doi:10.1016/j.carres.2006.01.006

    Article  CAS  PubMed  Google Scholar 

  44. Cerveny S, Schwartz GA, Alegria A, Bergman R, Swenson J (2006) Water dynamics in n-propylene glycol aqueous solutions. J Chem Phys 124(19):194501. doi:10.1063/1.2198206

    Article  CAS  PubMed  Google Scholar 

  45. Singh LP, Cerveny S, Alegria A, Colmenero J (2011) Dynamics of water in supercooled aqueous solutions of poly(propylene glycol) as studied by broadband dielectric spectroscopy and low-temperature FTIR-ATR spectroscopy. J Phys Chem B 115(47):13817–13827. doi:10.1021/jp2073705

    Article  CAS  PubMed  Google Scholar 

  46. Sudo S, Tobinai S, Shinyashiki N, Yagihara S (2006) Broadband Dielectric study on glass transition of 1-propanol-water mixture. In: Tokuyama M, Maruyama S (eds) AIP Conf Proc 832:149–152. doi:10.1063/1.2204477

  47. Miyara M, Sakuramatsu Y, Sasaki K, Kita R, Shinyashiki N, Yagihara S (2013) Glass transition and dynamics of poly(vinyl pyrrolidone)-water mixture. In: Tokuyama M, Oppenheim I (eds) AIP Conf Proc 1518:300–303. doi:10.1063/1.4794586

  48. Cerveny S, Alegria A, Colmenero J (2008) Broadband dielectric investigation on poly(vinyl pyrrolidone) and its water mixtures. J Chem Phys 128(4):044901. doi:10.1063/1.2822332

    Article  PubMed  Google Scholar 

  49. Busselez R, Arbe A, Cerveny S, Capponi S, Colmenero J, Frick B (2012) Component dynamics in polyvinylpyrrolidone concentrated aqueous solutions. J Chem Phys 137(8):084902. doi:10.1063/1.4746020

    Article  PubMed  Google Scholar 

  50. Cerveny S, Colmenero J, Alegría A (2005) Dielectric investigation of the low-temperature water dynamics in the poly(vinyl methyl ether)/H2O system. Macromolecules 38(16):7056–7063. doi:10.1021/ma050811t

    Article  CAS  Google Scholar 

  51. Capponi S, Arbe A, Cerveny S, Busselez R, Frick B, Embs JP, Colmenero J (2011) Quasielastic neutron scattering study of hydrogen motions in an aqueous poly(vinyl methyl ether) solution. J Chem Phys 134(20):204906. doi:10.1063/1.3592560

    Article  CAS  PubMed  Google Scholar 

  52. Shinyashiki N, Shinohara M, Iwata Y, Goto T, Oyama M, Suzuki S, Yamamoto W, Yagihara S, Inoue T, Oyaizu S, Yamamoto S, Ngai KL, Capaccioli S (2008) The glass transition and dielectric secondary relaxation of fructose-water mixtures. J Phys Chem B 112(48):15470–15477. doi:10.1021/jp807038r

    Article  CAS  PubMed  Google Scholar 

  53. Cerveny S, Schwartz G, Bergman R, Swenson J (2004) Glass transition and relaxation processes in supercooled water. Phys Rev Lett 93(24):245702. doi:10.1103/PhysRevLett.93.245702

    Article  PubMed  Google Scholar 

  54. Cerveny S, Alegría Á, Colmenero J (2008) Universal features of water dynamics in solutions of hydrophilic polymers, biopolymers, and small glass-forming materials. Phys Rev E 77(3):031803. doi:10.1103/PhysRevE.77.031803

    Article  Google Scholar 

  55. Shinyashiki N, Sudo S, Yagihara S, Spanoudaki A, Kyritsis A, Pissis P (2007) Relaxation processes of water in the liquid to glassy states of water mixtures studied by broadband dielectric spectroscopy. J Phys Condens Matter 19(20):205113 (205112 pp). 10.1088/0953-8984/19/20/205113

  56. Capaccioli S, Ngai KL, Shinyashiki N (2007) The Johari-Goldstein beta-relaxation of water. J Phys Chem B 111(28):8197–8209. doi:10.1021/jp071857m

    Article  CAS  PubMed  Google Scholar 

  57. Ngai KL, Capaccioli S, Paciaroni A (2013) Nature of the water specific relaxation in hydrated proteins and aqueous mixtures. Chem Phys 424:37–44. doi:10.1016/j.chemphys.2013.05.018

    Article  CAS  Google Scholar 

  58. Shinyashiki N, Sudo S, Abe W, Yagihara S (1998) Shape of dielectric relaxation curves of ethylene glycol oligomer water mixtures. J Chem Phys 109(22):9843–9847. doi:10.1063/1.477653

    Article  CAS  Google Scholar 

  59. Shinyashiki N, Yagihara S, Arita I, Mashimo S (1998) Dynamics of water in a polymer matrix studied by a microwave dielectric measurement. J Phys Chem B 102(17):3249–3251. doi:10.1021/Jp9729627

    Article  CAS  Google Scholar 

  60. Shinyashiki N, Yagihara S (1999) Comparison of dielectric relaxations of water mixtures of poly(vinylpyrrolidone) and 1-vinyl-2-pyrrolidinone. J Phys Chem B 103(21):4481–4484. doi:10.1021/jp983800t

    Article  CAS  Google Scholar 

  61. Sudo S, Shinyashiki N, Kitsuki Y, Yagihara S (2002) Dielectric relaxation time and relaxation time distribution of alcohol–water mixtures. J Phys Chem A 106(3):458–464. doi:10.1021/jp013117y

    Article  CAS  Google Scholar 

  62. Hayashi Y, Shinyashiki N, Yagihara S (2002) Dynamical structure of water around biopolymers investigated by microwave dielectric measurements using time domain reflectometry method. J Non-Cryst Solids 305(1–3):328–332. doi: 10.1016/S0022-3093(02)01113-4. Pii S0022-3093(02)01113-4

  63. Swenson J, Jansson H, Bergman R (2006) Relaxation processes in supercooled confined water and implications for protein dynamics. Phys Rev Lett 96(24):247802. doi:10.1103/PhysRevLett.96.247802

    Article  PubMed  Google Scholar 

  64. Bergman R, Swenson J (2000) Dynamics of supercooled water in confined geometry. Nature 403(6767):283–286. doi:10.1038/35002027

    Article  CAS  PubMed  Google Scholar 

  65. Bergman R, Swenson J, Borjesson L, Jacobsson P (2000) Dielectric study of supercooled 2D water in a vermiculite clay. J Chem Phys 113(1):357–363. doi:10.1063/1.481800

    Article  CAS  Google Scholar 

  66. Jansson H, Swenson J (2003) Dynamics of water in molecular sieves by dielectric spectroscopy. Eur Phys J E Soft Matter 12(Suppl 1):S51–S54. doi:10.1140/epjed/e2003-01-013-5

    Article  PubMed  Google Scholar 

  67. Cammarata M, Levantino M, Cupane A, Longo A, Martorana A, Bruni F (2003) Structure and dynamics of water confined in silica hydrogels: X-ray scattering and dielectric spectroscopy studies. Eur Phys J E Soft Matter 12(Suppl 1):S63–S66. doi:10.1140/epjed/e2003-01-016-2

    Article  PubMed  Google Scholar 

  68. Cupane A, Levantino M, Santangelo MG (2002) Near-infrared spectra of water confined in silica hydrogels in the temperature interval 365–5 K. J Phys Chem B 106(43):11323–11328. doi:10.1021/jp026117m

    Article  CAS  Google Scholar 

  69. Schirò G, Cupane A, Pagnotta SE, Bruni F (2007) Dynamic properties of solvent confined in silica gels studied by broadband dielectric spectroscopy. J Non-Cryst Solids 353(47–51):4546–4551. doi:10.1016/j.jnoncrysol.2007.02.083

    Article  Google Scholar 

  70. Pathmanathan K, Johari GP (1990) Dielectric and conductivity relaxations in poly(hema) and of water in its hydrogel. J Polym Sci B Polym Phys 28(5):675–689. doi:10.1002/polb.1990.090280507

    Article  CAS  Google Scholar 

  71. Pathmanathan K, Johari GP (1994) Relaxation and crystallization of water in a hydrogel. J Chem Soc Faraday Trans 90(8):1143–1148. doi:10.1039/FT9949001143

    Article  CAS  Google Scholar 

  72. Johari GP (1996) Water’s character from dielectric relaxation above its Tg. J Chem Phys 105(16):7079. doi:10.1063/1.472509

    Article  CAS  Google Scholar 

  73. Bosio L, Johari GP, Oumezzine M, Teixeira J (1992) X-ray and neutron scattering studies of the structure of water in a hydrogel. Chem Phys Lett 188(1–2):113–118. doi:10.1016/0009-2614(92)85098-U

    Article  CAS  Google Scholar 

  74. Ansari A, Berendzen J, Braunstein D, Cowen BR, Frauenfelder H, Hong MK, Iben IE, Johnson JB, Ormos P, Sauke TB et al (1987) Rebinding and relaxation in the myoglobin pocket. Biophys Chem 26(2–3):337–355. doi:10.1016/0301-4622(87)80034-0

    Article  CAS  PubMed  Google Scholar 

  75. Fenimore PW, Frauenfelder H, McMahon BH, Parak FG (2002) Slaving: solvent fluctuations dominate protein dynamics and functions. Proc Natl Acad Sci U S A 99(25):16047–16051. doi:10.1073/pnas.212637899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Wolf M, Gulich R, Lunkenheimer P, Loidl A (2012) Relaxation dynamics of a protein solution investigated by dielectric spectroscopy. Biochim Biophys Acta 1824(5):723–730. doi:10.1016/j.bbapap.2012.02.008

    Article  CAS  PubMed  Google Scholar 

  77. Cametti C, Marchetti S, Gambi CM, Onori G (2011) Dielectric relaxation spectroscopy of lysozyme aqueous solutions: analysis of the delta-dispersion and the contribution of the hydration water. J Phys Chem B 115(21):7144–7153. doi:10.1021/jp2019389

    Article  CAS  PubMed  Google Scholar 

  78. Emmert S, Wolf M, Gulich R, Krohns S, Kastner S, Lunkenheimer P, Loidl A (2011) Electrode polarization effects in broadband dielectric spectroscopy. Eur Phys J B 83(2):157–165. doi:10.1140/epjb/e2011-20439-8

    Article  CAS  Google Scholar 

  79. Panagopoulou A, Kyritsis A, Shinyashiki N, Pissis P (2012) Protein and water dynamics in bovine serum albumin–water mixtures over wide ranges of composition. J Phys Chem B 116(15):4593–4602. doi:10.1021/jp2105727

    Article  CAS  PubMed  Google Scholar 

  80. Panagopoulou A, Kyritsis A, Sabater ISR, Gomez Ribelles JL, Shinyashiki N, Pissis P (2011) Glass transition and dynamics in BSA-water mixtures over wide ranges of composition studied by thermal and dielectric techniques. Biochim Biophys Acta 1814(12):1984–1996. doi:10.1016/j.bbapap.2011.07.014

    Article  CAS  PubMed  Google Scholar 

  81. Panagopoulou A, Kyritsis A, Aravantinou A-M, Nanopoulos D, i Serra RS, Gómez Ribelles JL, Shinyashiki N, Pissis P (2011) Glass transition and dynamics in lysozyme–water mixtures over wide ranges of composition. Food Biophys 6(2):199–209. doi:10.1007/s11483-010-9201-0

    Article  Google Scholar 

  82. Panagopoulou A, Kyritsis A, Vodina M, Pissis P (2013) Dynamics of uncrystallized water and protein in hydrated elastin studied by thermal and dielectric techniques. Biochim Biophys Acta 1834(6):977–988. doi:10.1016/j.bbapap.2013.03.015

    Article  CAS  PubMed  Google Scholar 

  83. Kawai K, Suzuki T, Oguni M (2006) Low-temperature glass transitions of quenched and annealed bovine serum albumin aqueous solutions. Biophys J 90(10):3732–3738. doi:10.1529/biophysj.105.075986

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Shinyashiki N, Yamamoto W, Yokoyama A, Yoshinari T, Yagihara S, Kita R, Ngai KL, Capaccioli S (2009) Glass transitions in aqueous solutions of protein (bovine serum albumin). J Phys Chem B 113(43):14448–14456. doi:10.1021/jp905511w

    Article  CAS  PubMed  Google Scholar 

  85. Johari GP, Whalley E (1981) The dielectric properties of ice Ih in the range 272–133 K. J Chem Phys 75(3):1333–1340. doi:10.1063/1.442139

    Article  CAS  Google Scholar 

  86. Ngai KL, Capaccioli S, Shinyashiki N (2008) The protein “glass” transition and the role of the solvent. J Phys Chem B 112(12):3826–3832. doi:10.1021/jp710462e

    Article  CAS  PubMed  Google Scholar 

  87. Ngai KL, Capaccioli S, Thayyil MS, Shinyashiki N (2010) Resolution of problems in soft matter dynamics by combining calorimetry and other spectroscopies. J Therm Anal Calorim 99(1):123–138. doi:10.1007/s10973-009-0500-y

    Article  CAS  Google Scholar 

  88. Ngai KL, Capaccioli S, Shinyashiki N, Thayyil MS (2010) Recent progress in understanding relaxation in complex systems. J Non-Cryst Solids 356(11–17):535–541. doi:10.1016/j.jnoncrysol.2009.03.011

    Article  CAS  Google Scholar 

  89. Capaccioli S, Ngai KL, Ancherbak S, Rolla PA, Shinyashiki N (2011) The role of primitive relaxation in the dynamics of aqueous mixtures, nano-confined water and hydrated proteins. J Non-Cryst Solids 357(2):641–654. doi:10.1016/j.jnoncrysol.2010.07.054

    Article  CAS  Google Scholar 

  90. Ngai KL, Capaccioli S, Ancherbak S, Shinyashiki N (2011) Resolving the ambiguity of the dynamics of water and clarifying its role in hydrated proteins. Philos Mag 91(13–15):1809–1835. doi:10.1080/14786435.2010.523716

    Article  CAS  Google Scholar 

  91. Fox TG (1956) Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull Am Phys Soc 1:123–125

    CAS  Google Scholar 

  92. Rault J, Lucas A, Neffati R, Monleón Pradas M (1997) Thermal transitions in hydrogels of poly(ethyl acrylate)/poly(hydroxyethyl acrylate) interpenetrating networks. Macromolecules 30(25):7866–7873. doi:10.1021/ma970344i

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author thanks all his collaborators for carrying out much of the work reported in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Shinyashiki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Shinyashiki, N. (2015). Dynamics and Glass Transition of Aqueous Solutions of Molecular Liquid, Polymer, and Protein Studied by Broadband Dielectric Spectroscopy. In: Kita, R., Dobashi, T. (eds) Nano/Micro Science and Technology in Biorheology. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54886-7_9

Download citation

Publish with us

Policies and ethics