Skip to main content

Abstract

Microglia are known as the resident immune cells in the central nervous system (CNS), including the retina. Under normal physiological conditions, they are involved in the surveillance of the CNS and are required for the construction of neural circuitry during development. Accumulating evidences have shown that microglia change to a reactive phenotype under pathological conditions. Microglial activation is associated with various CNS diseases such as glaucoma. When microglia are activated, they form an amoeboid shape and release inflammatory cytokines. Excessive microglial activation causes retinal tissue damage and contributes to apoptosis. In contrast, microglia act as phagocytes that remove apoptotic neurons, pathogens, and cellular debris. This may proceed to protect retinal neurons. Thus, microglia show dual functions in neurodegeneration. Although it is under debate whether microglia are good or bad for CNS diseases, both effects appear to occur in glaucoma. This chapter reviews the roles of microglia in the retina, with a particular focus on their protective and destructive roles in glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. del Rio-Hortega P (1919) El “tercer elemento” de los centros nerviosus. Bol Soc Esp Biol 9:69–120

    Google Scholar 

  2. del Rio-Hortega P (1932) Microglia, vol 2. Cytology and cellular pathology of the nervous system. Hoeber, New York

    Google Scholar 

  3. Rezaie P, Male D (2002) Mesoglia & microglia–a historical review of the concept of mononuclear phagocytes within the central nervous system. J Hist Neurosci 11(4):325–374. doi:10.1076/jhin.11.4.325.8531

    Article  PubMed  Google Scholar 

  4. Chan WY, Kohsaka S, Rezaie P (2007) The origin and cell lineage of microglia: new concepts. Brain Res Rev 53(2):344–354. doi:10.1016/j.brainresrev.2006.11.002

    Article  CAS  PubMed  Google Scholar 

  5. Ashwell K (1991) The distribution of microglia and cell death in the fetal rat forebrain. Brain Res Dev Brain Res 58(1):1–12

    Article  CAS  PubMed  Google Scholar 

  6. Boya J, Calvo J, Prado A (1979) The origin of microglial cells. J Anat 129(Pt 1):177–186

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Kitamura T, Miyake T, Fujita S (1984) Genesis of resting microglia in the gray matter of mouse hippocampus. J Comp Neurol 226(3):421–433. doi:10.1002/cne.902260310

    Article  CAS  PubMed  Google Scholar 

  8. Paterson JA, Privat A, Ling EA, Leblond CP (1973) Investigation of glial cells in semithin sections. 3. Transformation of subependymal cells into glial cells, as shown by radioautography after 3H-thymidine injection into the lateral ventricle of the brain of young rats. J Comp Neurol 149(1):83–102. doi:10.1002/cne.901490106

    Article  CAS  PubMed  Google Scholar 

  9. Ling EA (1982) Influence of cortisone on amoeboid microglia and microglial cells in the corpus callosum in postnatal rats. J Anat 134(Pt 4):705–717

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 117(2):145–152

    Article  CAS  PubMed  Google Scholar 

  11. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, Mehler MF, Conway SJ, Ng LG, Stanley ER, Samokhvalov IM, Merad M (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845. doi:10.1126/science.1194637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, Prinz M, Wu B, Jacobsen SE, Pollard JW, Frampton J, Liu KJ, Geissmann F (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336(6077):86–90. doi:10.1126/science.1219179

    Article  CAS  PubMed  Google Scholar 

  13. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, Wieghofer P, Heinrich A, Riemke P, Holscher C, Muller DN, Luckow B, Brocker T, Debowski K, Fritz G, Opdenakker G, Diefenbach A, Biber K, Heikenwalder M, Geissmann F, Rosenbauer F, Prinz M (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16(3):273–280. doi:10.1038/nn.3318

    Article  CAS  PubMed  Google Scholar 

  14. Chen SK, Tvrdik P, Peden E, Cho S, Wu S, Spangrude G, Capecchi MR (2010) Hematopoietic origin of pathological grooming in Hoxb8 mutant mice. Cell 141(5):775–785. doi:10.1016/j.cell.2010.03.055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Herbomel P, Thisse B, Thisse C (2001) Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev Biol 238(2):274–288. doi:10.1006/dbio.2001.0393

    Article  CAS  PubMed  Google Scholar 

  16. Santos AM, Calvente R, Tassi M, Carrasco MC, Martin-Oliva D, Marin-Teva JL, Navascues J, Cuadros MA (2008) Embryonic and postnatal development of microglial cells in the mouse retina. J Comp Neurol 506(2):224–239. doi:10.1002/cne.21538

    Article  PubMed  Google Scholar 

  17. Hume DA, Perry VH, Gordon S (1983) Immunohistochemical localization of a macrophage-specific antigen in developing mouse retina: phagocytosis of dying neurons and differentiation of microglial cells to form a regular array in the plexiform layers. J Cell Biol 97(1):253–257

    Article  CAS  PubMed  Google Scholar 

  18. Oppenheim RW (1991) Cell death during development of the nervous system. Annu Rev Neurosci 14:453–501. doi:10.1146/annurev.ne.14.030191.002321

    Article  CAS  PubMed  Google Scholar 

  19. Buss RR, Sun W, Oppenheim RW (2006) Adaptive roles of programmed cell death during nervous system development. Annu Rev Neurosci 29:1–35. doi:10.1146/annurev.neuro.29.051605.112800

    Article  CAS  PubMed  Google Scholar 

  20. Diaz-Araya CM, Provis JM, Penfold PL, Billson FA (1995) Development of microglial topography in human retina. J Comp Neurol 363(1):53–68. doi:10.1002/cne.903630106

    Article  CAS  PubMed  Google Scholar 

  21. Provis JM, Diaz CM, Penfold PL (1996) Microglia in human retina: a heterogeneous population with distinct ontogenies. Perspect Dev Neurobiol 3(3):213–222

    CAS  PubMed  Google Scholar 

  22. Marin-Teva JL, Calvente R, Cuadros MA, Almendros A, Navascues J (1999) Circumferential migration of ameboid microglia in the margin of the developing quail retina. Glia 27(3):226–238

    Article  CAS  PubMed  Google Scholar 

  23. Kaur C, Hao AJ, Wu CH, Ling EA (2001) Origin of microglia. Microsc Res Tech 54(1):2–9. doi:10.1002/jemt.1114

    Article  CAS  PubMed  Google Scholar 

  24. Soulet D, Rivest S (2008) Bone-marrow-derived microglia: myth or reality? Curr Opin Pharmacol 8(4):508–518. doi:10.1016/j.coph.2008.04.002

    Article  CAS  PubMed  Google Scholar 

  25. Ransohoff RM, Perry VH (2009) Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 27:119–145. doi:10.1146/annurev.immunol.021908.132528

    Article  CAS  PubMed  Google Scholar 

  26. Graeber MB, Streit WJ (2010) Microglia: biology and pathology. Acta Neuropathol 119(1):89–105. doi:10.1007/s00401-009-0622-0

    Article  PubMed  Google Scholar 

  27. Xu H, Chen M, Mayer EJ, Forrester JV, Dick AD (2007) Turnover of resident retinal microglia in the normal adult mouse. Glia 55(11):1189–1198. doi:10.1002/glia.20535

    Article  PubMed  Google Scholar 

  28. Kezic J, McMenamin PG (2008) Differential turnover rates of monocyte-derived cells in varied ocular tissue microenvironments. J Leukoc Biol 84(3):721–729. doi:10.1189/jlb.0308166

    Article  CAS  PubMed  Google Scholar 

  29. Kezic J, Xu H, Chinnery HR, Murphy CC, McMenamin PG (2008) Retinal microglia and uveal tract dendritic cells and macrophages are not CX3CR1 dependent in their recruitment and distribution in the young mouse eye. Invest Ophthalmol Vis Sci 49(4):1599–1608. doi:10.1167/iovs.07-0953

    Article  PubMed  Google Scholar 

  30. Kaneko H, Nishiguchi KM, Nakamura M, Kachi S, Terasaki H (2008) Characteristics of bone marrow-derived microglia in the normal and injured retina. Invest Ophthalmol Vis Sci 49(9):4162–4168. doi:10.1167/iovs.08-1738

    Article  PubMed  Google Scholar 

  31. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM (2007) Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 10(12):1538–1543. doi:10.1038/nn2014

    Article  CAS  PubMed  Google Scholar 

  32. Ransohoff RM (2007) Microgliosis: the questions shape the answers. Nat Neurosci 10(12):1507–1509. doi:10.1038/nn1207-1507

    Article  CAS  PubMed  Google Scholar 

  33. Hanisch UK (2002) Microglia as a source and target of cytokines. Glia 40(2):140–155. doi:10.1002/glia.10161

    Article  PubMed  Google Scholar 

  34. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394. doi:10.1038/nn1997

    Article  CAS  PubMed  Google Scholar 

  35. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318. doi:10.1126/science.1110647

    Article  CAS  PubMed  Google Scholar 

  36. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758. doi:10.1038/nn1472

    Article  CAS  PubMed  Google Scholar 

  37. Streit WJ (2002) Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40(2):133–139. doi:10.1002/glia.10154

    Article  PubMed  Google Scholar 

  38. van Rossum D, Hanisch UK (2004) Microglia. Metab Brain Dis 19(3–4):393–411

    Article  PubMed  Google Scholar 

  39. Harrison JK, Jiang Y, Chen S, Xia Y, Maciejewski D, McNamara RK, Streit WJ, Salafranca MN, Adhikari S, Thompson DA, Botti P, Bacon KB, Feng L (1998) Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci U S A 95(18):10896–10901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Cook DN, Chen SC, Sullivan LM, Manfra DJ, Wiekowski MT, Prosser DM, Vassileva G, Lira SA (2001) Generation and analysis of mice lacking the chemokine fractalkine. Mol Cell Biol 21(9):3159–3165. doi:10.1128/MCB.21.9.3159-3165.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM, Huang D, Kidd G, Dombrowski S, Dutta R, Lee JC, Cook DN, Jung S, Lira SA, Littman DR, Ransohoff RM (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9(7):917–924. doi:10.1038/nn1715

    Article  CAS  PubMed  Google Scholar 

  42. Luo L, O’Leary DD (2005) Axon retraction and degeneration in development and disease. Annu Rev Neurosci 28:127–156. doi:10.1146/annurev.neuro.28.061604.135632

    Article  CAS  PubMed  Google Scholar 

  43. Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J (2009) Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 29(13):3974–3980. doi:10.1523/JNEUROSCI.4363-08.2009

    Article  CAS  PubMed  Google Scholar 

  44. Tremblay ME, Lowery RL, Majewska AK (2010) Microglial interactions with synapses are modulated by visual experience. PLoS Biol 8(11):e1000527. doi:10.1371/journal.pbio.1000527

    Article  PubMed Central  PubMed  Google Scholar 

  45. Hollopeter G, Jantzen HM, Vincent D, Li G, England L, Ramakrishnan V, Yang RB, Nurden P, Nurden A, Julius D, Conley PB (2001) Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature 409(6817):202–207. doi:10.1038/35051599

    Article  CAS  PubMed  Google Scholar 

  46. Zhang FL, Luo L, Gustafson E, Lachowicz J, Smith M, Qiao X, Liu YH, Chen G, Pramanik B, Laz TM, Palmer K, Bayne M, Monsma FJ Jr (2001) ADP is the cognate ligand for the orphan G protein-coupled receptor SP1999. J Biol Chem 276(11):8608–8615. doi:10.1074/jbc.M009718200

    Article  CAS  PubMed  Google Scholar 

  47. Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9(12):1512–1519. doi:10.1038/nn1805

    Article  CAS  PubMed  Google Scholar 

  48. Chen M, Forrester JV, Xu H (2011) Dysregulation in retinal para-inflammation and age-related retinal degeneration in CCL2 or CCR2 deficient mice. PLoS One 6(8):e22818. doi:10.1371/journal.pone.0022818

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Fries JE, Wheeler-Schilling TH, Guenther E, Kohler K (2004) Expression of P2Y1, P2Y2, P2Y4, and P2Y6 receptor subtypes in the rat retina. Invest Ophthalmol Vis Sci 45(10):3410–3417. doi:10.1167/iovs.04-0141

    Article  PubMed  Google Scholar 

  50. Schuetz E, Thanos S (2004) Microglia-targeted pharmacotherapy in retinal neurodegenerative diseases. Curr Drug Targets 5(7):619–627

    Article  CAS  PubMed  Google Scholar 

  51. Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19(8):312–318

    Article  CAS  PubMed  Google Scholar 

  52. Streit WJ, Walter SA, Pennell NA (1999) Reactive microgliosis. Prog Neurobiol 57(6):563–581

    Article  CAS  PubMed  Google Scholar 

  53. Barron KD (1995) The microglial cell. A historical review. J Neurol Sci 134(Suppl):57–68

    Article  PubMed  Google Scholar 

  54. Joly S, Francke M, Ulbricht E, Beck S, Seeliger M, Hirrlinger P, Hirrlinger J, Lang KS, Zinkernagel M, Odermatt B, Samardzija M, Reichenbach A, Grimm C, Reme CE (2009) Cooperative phagocytes: resident microglia and bone marrow immigrants remove dead photoreceptors in retinal lesions. Am J Pathol 174(6):2310–2323. doi:10.2353/ajpath.2009.090023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Wohl SG, Schmeer CW, Witte OW, Isenmann S (2010) Proliferative response of microglia and macrophages in the adult mouse eye after optic nerve lesion. Invest Ophthalmol Vis Sci 51(5):2686–2696. doi:10.1167/iovs.09-4537

    Article  PubMed  Google Scholar 

  56. Neumann H, Kotter MR, Franklin RJ (2009) Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 132(Pt 2):288–295. doi:10.1093/brain/awn109

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK (1992) Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 149(8):2736–2741

    CAS  PubMed  Google Scholar 

  58. Gupta N, Brown KE, Milam AH (2003) Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Exp Eye Res 76(4):463–471

    Article  CAS  PubMed  Google Scholar 

  59. Neufeld AH (1999) Microglia in the optic nerve head and the region of parapapillary chorioretinal atrophy in glaucoma. Arch Ophthalmol 117(8):1050–1056

    Article  CAS  PubMed  Google Scholar 

  60. Santos AM, Martin-Oliva D, Ferrer-Martin RM, Tassi M, Calvente R, Sierra A, Carrasco MC, Marin-Teva JL, Navascues J, Cuadros MA (2010) Microglial response to light-induced photoreceptor degeneration in the mouse retina. J Comp Neurol 518(4):477–492. doi:10.1002/cne.22227

    Article  CAS  PubMed  Google Scholar 

  61. Nagai A, Mishima S, Ishida Y, Ishikura H, Harada T, Kobayashi S, Kim SU (2005) Immortalized human microglial cell line: phenotypic expression. J Neurosci Res 81(3):342–348. doi:10.1002/jnr.20478

    Article  CAS  PubMed  Google Scholar 

  62. Nakamura Y (2002) Regulating factors for microglial activation. Biol Pharm Bull 25(8):945–953

    Article  CAS  PubMed  Google Scholar 

  63. Levin LA (1999) Direct and indirect approaches to neuroprotective therapy of glaucomatous optic neuropathy. Surv Ophthalmol 43(Suppl 1):S98–S101

    Article  PubMed  Google Scholar 

  64. Neufeld AH, Sawada A, Becker B (1999) Inhibition of nitric-oxide synthase 2 by aminoguanidine provides neuroprotection of retinal ganglion cells in a rat model of chronic glaucoma. Proc Natl Acad Sci U S A 96(17):9944–9948

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Tezel G, Li LY, Patil RV, Wax MB (2001) TNF-alpha and TNF-alpha receptor-1 in the retina of normal and glaucomatous eyes. Invest Ophthalmol Vis Sci 42(8):1787–1794

    CAS  PubMed  Google Scholar 

  66. Mitrovic B, Martin FC, Charles AC, Ignarro LJ, Anton PA, Shanahan F, Merrill JE (1994) Neurotransmitters and cytokines in CNS pathology. Prog Brain Res 103:319–330

    Article  CAS  PubMed  Google Scholar 

  67. Streit WJ (1996) The role of microglia in brain injury. Neurotoxicology 17(3–4):671–678

    CAS  PubMed  Google Scholar 

  68. Stoll G, Jander S (1999) The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 58(3):233–247

    Article  CAS  PubMed  Google Scholar 

  69. Kim SU, de Vellis J (2005) Microglia in health and disease. J Neurosci Res 81(3):302–313. doi:10.1002/jnr.20562

    Article  CAS  PubMed  Google Scholar 

  70. Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69. doi:10.1038/nrn2038

    Article  CAS  PubMed  Google Scholar 

  71. Taylor DL, Jones F, Kubota ES, Pocock JM (2005) Stimulation of microglial metabotropic glutamate receptor mGlu2 triggers tumor necrosis factor alpha-induced neurotoxicity in concert with microglial-derived Fas ligand. J Neurosci 25(11):2952–2964. doi:10.1523/JNEUROSCI.4456-04.2005

    Article  CAS  PubMed  Google Scholar 

  72. Ahmed F, Brown KM, Stephan DA, Morrison JC, Johnson EC, Tomarev SI (2004) Microarray analysis of changes in mRNA levels in the rat retina after experimental elevation of intraocular pressure. Invest Ophthalmol Vis Sci 45(4):1247–1258

    Article  PubMed  Google Scholar 

  73. Steele MR, Inman DM, Calkins DJ, Horner PJ, Vetter ML (2006) Microarray analysis of retinal gene expression in the DBA/2J model of glaucoma. Invest Ophthalmol Vis Sci 47(3):977–985. doi:10.1167/iovs.05-0865

    Article  PubMed  Google Scholar 

  74. Bosco A, Crish SD, Steele MR, Romero CO, Inman DM, Horner PJ, Calkins DJ, Vetter ML (2012) Early reduction of microglia activation by irradiation in a model of chronic glaucoma. PLoS One 7(8):e43602. doi:10.1371/journal.pone.0043602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Bosco A, Inman DM, Steele MR, Wu G, Soto I, Marsh-Armstrong N, Hubbard WC, Calkins DJ, Horner PJ, Vetter ML (2008) Reduced retina microglial activation and improved optic nerve integrity with minocycline treatment in the DBA/2J mouse model of glaucoma. Invest Ophthalmol Vis Sci 49(4):1437–1446. doi:10.1167/iovs.07-1337

    Article  PubMed  Google Scholar 

  76. Singhal S, Lawrence JM, Salt TE, Khaw PT, Limb GA (2010) Triamcinolone attenuates macrophage/microglia accumulation associated with NMDA-induced RGC death and facilitates survival of Muller stem cell grafts. Exp Eye Res 90(2):308–315. doi:10.1016/j.exer.2009.11.008

    Article  CAS  PubMed  Google Scholar 

  77. de Kozak Y, Cotinet A, Goureau O, Hicks D, Thillaye-Goldenberg B (1997) Tumor necrosis factor and nitric oxide production by resident retinal glial cells from rats presenting hereditary retinal degeneration. Ocul Immunol Inflamm 5(2):85–94

    Article  PubMed  Google Scholar 

  78. Shohami E, Ginis I, Hallenbeck JM (1999) Dual role of tumor necrosis factor alpha in brain injury. Cytokine Growth Factor Rev 10(2):119–130

    Article  CAS  PubMed  Google Scholar 

  79. Tezel G (2008) TNF-alpha signaling in glaucomatous neurodegeneration. Prog Brain Res 173:409–421. doi:10.1016/S0079-6123(08)01128-X

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Yang X, Luo C, Cai J, Powell DW, Yu D, Kuehn MH, Tezel G (2011) Neurodegenerative and inflammatory pathway components linked to TNF-alpha/TNFR1 signaling in the glaucomatous human retina. Invest Ophthalmol Vis Sci 52(11):8442–8454. doi:10.1167/iovs.11-8152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Tezel G, Yang X, Yang J, Wax MB (2004) Role of tumor necrosis factor receptor-1 in the death of retinal ganglion cells following optic nerve crush injury in mice. Brain Res 996(2):202–212

    Article  CAS  PubMed  Google Scholar 

  82. Yan X, Tezel G, Wax MB, Edward DP (2000) Matrix metalloproteinases and tumor necrosis factor alpha in glaucomatous optic nerve head. Arch Ophthalmol 118(5):666–673

    Article  CAS  PubMed  Google Scholar 

  83. Yuan L, Neufeld AH (2000) Tumor necrosis factor-alpha: a potentially neurodestructive cytokine produced by glia in the human glaucomatous optic nerve head. Glia 32(1):42–50

    Article  CAS  PubMed  Google Scholar 

  84. Roh M, Zhang Y, Murakami Y, Thanos A, Lee SC, Vavvas DG, Benowitz LI, Miller JW (2012) Etanercept, a widely used inhibitor of tumor necrosis factor-alpha (TNF-alpha), prevents retinal ganglion cell loss in a rat model of glaucoma. PLoS One 7(7):e40065. doi:10.1371/journal.pone.0040065

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Bai Y, Shi Z, Zhuo Y, Liu J, Malakhov A, Ko E, Burgess K, Schaefer H, Esteban PF, Tessarollo L, Saragovi HU (2010) In glaucoma the upregulated truncated TrkC.T1 receptor isoform in glia causes increased TNF-alpha production, leading to retinal ganglion cell death. Invest Ophthalmol Vis Sci 51(12):6639–6651. doi:10.1167/iovs.10-5431

    Article  PubMed Central  PubMed  Google Scholar 

  86. Allen RD (1999) Polymorphism of the human TNF-alpha promoter–random variation or functional diversity? Mol Immunol 36(15–16):1017–1027

    Article  CAS  PubMed  Google Scholar 

  87. Fan BJ, Liu K, Wang DY, Tham CC, Tam PO, Lam DS, Pang CP (2010) Association of polymorphisms of tumor necrosis factor and tumor protein p53 with primary open-angle glaucoma. Invest Ophthalmol Vis Sci 51(8):4110–4116. doi:10.1167/iovs.09-4974

    Article  PubMed  Google Scholar 

  88. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131(6):1164–1178. doi:10.1016/j.cell.2007.10.036

    Article  CAS  PubMed  Google Scholar 

  89. Arroba AI, Alvarez-Lindo N, van Rooijen N, de la Rosa EJ (2011) Microglia-mediated IGF-I neuroprotection in the rd10 mouse model of retinitis pigmentosa. Invest Ophthalmol Vis Sci 52(12):9124–9130. doi:10.1167/iovs.11-7736

    Article  PubMed  Google Scholar 

  90. Cen LP, Luo JM, Zhang CW, Fan YM, Song Y, So KF, van Rooijen N, Pang CP, Lam DS, Cui Q (2007) Chemotactic effect of ciliary neurotrophic factor on macrophages in retinal ganglion cell survival and axonal regeneration. Invest Ophthalmol Vis Sci 48(9):4257–4266. doi:10.1167/iovs.06-0791

    Article  PubMed  Google Scholar 

  91. Ueno M, Fujita Y, Tanaka T, Nakamura Y, Kikuta J, Ishii M, Yamashita T (2013) Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci 16(5):543–551. doi:10.1038/nn.3358

    Article  CAS  PubMed  Google Scholar 

  92. Wang M, Ma W, Zhao L, Fariss RN, Wong WT (2011) Adaptive Muller cell responses to microglial activation mediate neuroprotection and coordinate inflammation in the retina. J Neuroinflammation 8:173. doi:10.1186/1742-2094-8-173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grants-in-Aid for Scientific Research (S) from the Japan Society for the Promotion of Science (JSPS) to TY.

Conflict of Interest Statement The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihide Yamashita .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Japan

About this chapter

Cite this chapter

Fujita, Y., Yamashita, T. (2014). Microglia. In: Nakazawa, T., Kitaoka, Y., Harada, T. (eds) Neuroprotection and Neuroregeneration for Retinal Diseases. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54965-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54965-9_13

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54964-2

  • Online ISBN: 978-4-431-54965-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics