Skip to main content

Theoretical Basis for Closed-Loop Stimulation as a Therapeutic Approach to Brain Injury

  • Chapter
  • First Online:
Clinical Systems Neuroscience

Abstract

Neuroprosthetic devices generally can be categorized as open-loop neuromodulation systems, which directly or indirectly excite neural tissue, or brain–computer interfaces, which derive control signals from the brain to operate external devices. Increasingly, neuroscientists, computer scientists, and engineers are beginning to envision and develop closed-loop systems that stimulate neuronal populations contingent upon a particular neuronal signal derived from another population of neurons. In the near future, investigations into the feasibility and efficacy of closed-loop systems for treating neurological conditions will likely emerge. Such conditions will include epilepsy, Parkinson’s disease, and potentially stroke, traumatic brain injury, and spinal cord injury. Thus, it is now critical to understand how such systems interact with the neural circuitry and how communication may be altered. The present theoretical model focuses on the potential ability for closed-loop systems to regulate synaptic potentiation in long-distance pathways in the nervous system, particularly corticocortical pathways between different functional areas. Because the demonstration of long-term potentiation and long-term depression in animal preparations has utilized stimulation timing protocols that are not typically feasible using noninvasive techniques, the present theoretical model focuses on the use of recording microelectrodes implanted within the cerebral cortex and that are able to discriminate individual action potentials. Likewise, the proposed model assumes that stimulating microelectrodes are also implanted intracortically, allowing focal stimulation of a small volume of cortical tissue. Despite the challenges of invasive procedures using implantable technology, such closed-loop systems have the potential to provide new treatment avenues in a host of neurological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coronado VG, Thomas KE, Sattin RW, Johnson RL (2005) The CDC traumatic brain injury surveillance system: characteristics of persons aged 65 years and older hospitalized with a TBI. J Head Trauma Rehabil 20(3):215–228

    Article  PubMed  Google Scholar 

  2. Leibson CL, Brown AW, Ransom JE, Diehl NN, Perkins PK, Mandrekar J, Malec JF (2011) Incidence of traumatic brain injury across the full disease spectrum: a population-based medical record review study. Epidemiology 22(6):836–844. doi:10.1097/EDE.0b013e318231d535

    Article  PubMed Central  PubMed  Google Scholar 

  3. Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K, Ford E, Furie K, Go A, Greenlund K, Haase N, Hailpern S, Ho M, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott M, Meigs J, Mozaffarian D, Nichol G, O’Donnell C, Roger V, Rosamond W, Sacco R, Sorlie P, Stafford R, Steinberger J, Thom T, Wasserthiel-Smoller S, Wong N, Wylie-Rosett J, Hong Y, American Heart Association Statistics Committee, Stroke Statistics Subcommittee (2009) Heart disease and stroke statistics—2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119(3):e21–e181. doi:10.1161/CIRCULATIONAHA.108.191261

    Article  PubMed  Google Scholar 

  4. Duncan PW (1994) Stroke disability. Phys Ther 74(5):399–407

    CAS  PubMed  Google Scholar 

  5. Duncan PW, Lai SM, Keighley J (2000) Defining post-stroke recovery: implications for design and interpretation of drug trials. Neuropharmacology 39(5):835–841

    Article  CAS  PubMed  Google Scholar 

  6. Patel AT, Duncan PW, Lai SM, Studenski S (2000) The relation between impairments and functional outcomes poststroke. Arch Phys Med Rehabil 81(10):1357–1363. doi:10.1053/apmr.2000.9397

    Article  CAS  PubMed  Google Scholar 

  7. Pulvermuller F, Neininger B, Elbert T, Mohr B, Rockstroh B, Koebbel P, Taub E (2001) Constraint-induced therapy of chronic aphasia after stroke. Stroke 32(7):1621–1626

    Article  CAS  PubMed  Google Scholar 

  8. Taub E, Uswatte G, King DK, Morris D, Crago JE, Chatterjee A (2006) A placebo-controlled trial of constraint-induced movement therapy for upper extremity after stroke. Stroke 37(4):1045–1049. doi:10.1161/01.STR.0000206463.66461.97

    Article  PubMed  Google Scholar 

  9. Rose DK, Winstein CJ (2004) Bimanual training after stroke: are two hands better than one? Top Stroke Rehabil 11:20–30

    Article  PubMed  Google Scholar 

  10. Bolognini N, Pascual-Leone A, Fregni F (2009) Using non-invasive brain stimulation to augment motor training-induced plasticity. J Neuroeng Rehabil 6:8. doi:10.1186/1743-0003-6-8

    Article  PubMed Central  PubMed  Google Scholar 

  11. Dimyan MA, Cohen LG (2010) Contribution of transcranial magnetic stimulation to the understanding of functional recovery mechanisms after stroke. Neurorehabil Neural Repair 24(2):125–135. doi:10.1177/1545968309345270

    Article  PubMed Central  PubMed  Google Scholar 

  12. Harris-Love ML, Morton SM, Perez MA, Cohen LG (2011) Mechanisms of short-term training-induced reaching improvement in severely hemiparetic stroke patients: a TMS study. Neurorehabil Neural Repair 25(5):398–411. doi:10.1177/1545968310395600

    Article  PubMed Central  PubMed  Google Scholar 

  13. Butefisch CM, Davis BC, Sawaki L, Waldvogel D, Classen J, Kopylev L, Cohen LG (2002) Modulation of use-dependent plasticity by d-amphetamine. Ann Neurol 51(1):59–68

    Article  CAS  PubMed  Google Scholar 

  14. Papadopoulos CM, Tsai SY, Guillen V, Ortega J, Kartje GL, Wolf WA (2009) Motor recovery and axonal plasticity with short-term amphetamine after stroke. Stroke 40(1):294–302. doi:10.1161/STROKEAHA.108.519769

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Lee DH, Strittmatter SM, Sah DW (2003) Targeting the Nogo receptor to treat central nervous system injuries. Nat Rev Drug Discov 2(11):872–878. doi:10.1038/nrd1228

    Article  CAS  PubMed  Google Scholar 

  16. Lee JK, Kim JE, Sivula M, Strittmatter SM (2004) Nogo receptor antagonism promotes stroke recovery by enhancing axonal plasticity. J Neurosci 24(27):6209–6217. doi:10.1523/JNEUROSCI.1643-04.2004

    Article  CAS  PubMed  Google Scholar 

  17. Nudo RJ, Sutherland DP, Masterton RB (1995) Variation and evolution of mammalian corticospinal somata with special reference to primates. J Comp Neurol 358(2):181–205. doi:10.1002/cne.903580203

    Article  CAS  PubMed  Google Scholar 

  18. Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4(5):399–415. doi:10.1038/nrn1106

    Article  CAS  PubMed  Google Scholar 

  19. Nudo RJ (2007) Postinfarct cortical plasticity and behavioral recovery. Stroke 38(2 Suppl):840–845. doi:10.1161/01.STR.0000247943.12887.d2

    Article  PubMed  Google Scholar 

  20. Dancause N, Barbay S, Frost SB, Plautz EJ, Chen D, Zoubina EV, Stowe AM, Nudo RJ (2005) Extensive cortical rewiring after brain injury. J Neurosci 25(44):10167–10179. doi:10.1523/JNEUROSCI.3256-05.2005

    Article  CAS  PubMed  Google Scholar 

  21. Metz GA, Antonow-Schlorke I, Witte OW (2005) Motor improvements after focal cortical ischemia in adult rats are mediated by compensatory mechanisms. Behav Brain Res 162(1):71–82. doi:10.1016/j.bbr.2005.03.002

    Article  PubMed  Google Scholar 

  22. Napieralski JA, Butler AK, Chesselet MF (1996) Anatomical and functional evidence for lesion-specific sprouting of corticostriatal input in the adult rat. J Comp Neurol 373(4):484–497. doi:10.1002/(SICI)1096-9861(19960930)373:4<484::AID-CNE2>3.0.CO;2-Y

    Article  CAS  PubMed  Google Scholar 

  23. Nudo RJ, Milliken GW (1996) Reorganization of movement representations in primary motor cortex following focal ischemic infarcts in adult squirrel monkeys. J Neurophysiol 75(5):2144–2149

    CAS  PubMed  Google Scholar 

  24. Wieloch T, Nikolich K (2006) Mechanisms of neural plasticity following brain injury. Curr Opin Neurobiol 16(3):258–264. doi:10.1016/j.conb.2006.05.011

    Article  CAS  PubMed  Google Scholar 

  25. Frost SB, Barbay S, Friel KM, Plautz EJ, Nudo RJ (2003) Reorganization of remote cortical regions after ischemic brain injury: a potential substrate for stroke recovery. J Neurophysiol 89(6):3205–3214. doi:10.1152/jn.01143.2002

    Article  CAS  PubMed  Google Scholar 

  26. Carmichael ST, Archibeque I, Luke L, Nolan T, Momiy J, Li S (2005) Growth-associated gene expression after stroke: evidence for a growth-promoting region in peri-infarct cortex. Exp Neurol 193(2):291–311. doi:10.1016/j.expneurol.2005.01.004

    Article  CAS  PubMed  Google Scholar 

  27. Urban ET 3rd, Bury SD, Barbay HS, Guggenmos DJ, Dong Y, Nudo RJ (2012) Gene expression changes of interconnected spared cortical neurons 7 days after ischemic infarct of the primary motor cortex in the rat. Mol Cell Biochem 369(1–2):267–286. doi:10.1007/s11010-012-1390-z

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Stowe AM, Plautz EJ, Eisner-Janowicz I, Frost SB, Barbay S, Zoubina EV, Dancause N, Taylor MD, Nudo RJ (2007) VEGF protein associates to neurons in remote regions following cortical infarct. J Cereb Blood Flow Metab 27(1):76–85. doi:10.1038/sj.jcbfm.9600320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Katz LC, Shatz CJ (1996) Synaptic activity and the construction of cortical circuits. Science 274(5290):1133–1138

    Article  CAS  PubMed  Google Scholar 

  30. Stellwagen D, Shatz CJ (2002) An instructive role for retinal waves in the development of retinogeniculate connectivity. Neuron 33(3):357–367

    Article  CAS  PubMed  Google Scholar 

  31. Carmichael ST, Chesselet MF (2002) Synchronous neuronal activity is a signal for axonal sprouting after cortical lesions in the adult. J Neurosci 22(14):6062–6070

    CAS  PubMed  Google Scholar 

  32. Canty AJ, Murphy M (2008) Molecular mechanisms of axon guidance in the developing corticospinal tract. Prog Neurobiol 85(2):214–235. doi:10.1016/j.pneurobio.2008.02.001

    Article  CAS  PubMed  Google Scholar 

  33. Pernet V, Schwab ME (2012) The role of Nogo-A in axonal plasticity, regrowth and repair. Cell Tissue Res 349:97–104

    Google Scholar 

  34. Chilton JK (2006) Molecular mechanisms of axon guidance. Dev Biol 292(1):13–24. doi:10.1016/j.ydbio.2005.12.048

    Article  CAS  PubMed  Google Scholar 

  35. Mueller BK (1999) Growth cone guidance: first steps towards a deeper understanding. Annu Rev Neurosci 22:351–388. doi:10.1146/annurev.neuro.22.1.351

    Article  CAS  PubMed  Google Scholar 

  36. Zhang LI, Poo MM (2001) Electrical activity and development of neural circuits. Nat Neurosci 4(Suppl):1207–1214. doi:10.1038/nn753

    Article  CAS  PubMed  Google Scholar 

  37. Kleim JA, Lussnig E, Schwarz ER, Comery TA, Greenough WT (1996) Synaptogenesis and Fos expression in the motor cortex of the adult rat after motor skill learning. J Neurosci 16(14):4529–4535

    CAS  PubMed  Google Scholar 

  38. Brown CE, Murphy TH (2008) Livin’ on the edge: imaging dendritic spine turnover in the peri-infarct zone during ischemic stroke and recovery. Neuroscientist 14(2):139–146. doi:10.1177/1073858407309854

    Article  PubMed  Google Scholar 

  39. Greenough WT, Hwang HM, Gorman C (1985) Evidence for active synapse formation or altered postsynaptic metabolism in visual cortex of rats reared in complex environments. Proc Natl Acad Sci U S A 82(13):4549–4552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Kleim JA, Barbay S, Nudo RJ (1998) Functional reorganization of the rat motor cortex following motor skill learning. J Neurophysiol 80(6):3321–3325

    CAS  PubMed  Google Scholar 

  41. Corbetta M (2012) Functional connectivity and neurological recovery. Dev Psychobiol 54(3):239–253. doi:10.1002/dev.20507

    Article  PubMed  Google Scholar 

  42. Deco G, Corbetta M (2011) The dynamical balance of the brain at rest. Neuroscientist 17(1):107–123. doi:10.1177/1073858409354384

    Article  PubMed Central  PubMed  Google Scholar 

  43. Hillary FG, Slocomb J, Hills EC, Fitzpatrick NM, Medaglia JD, Wang J, Good DC, Wylie GR (2011) Changes in resting connectivity during recovery from severe traumatic brain injury. Int J Psychophysiol 82(1):115–123. doi:10.1016/j.ijpsycho.2011.03.011

    Article  CAS  PubMed  Google Scholar 

  44. Mayer AR, Mannell MV, Ling J, Gasparovic C, Yeo RA (2011) Functional connectivity in mild traumatic brain injury. Hum Brain Mapp 32(11):1825–1835. doi:10.1002/hbm.21151

    Article  PubMed Central  PubMed  Google Scholar 

  45. Nudo RJ, Friel KM, Delia SW (2000) Role of sensory deficits in motor impairments after injury to primary motor cortex. Neuropharmacology 39(5):733–742

    Article  CAS  PubMed  Google Scholar 

  46. Varkuti B, Guan C, Pan Y, Phua KS, Ang KK, Kuah CW, Chua K, Ang BT, Birbaumer N, Sitaram R (2013) Resting state changes in functional connectivity correlate with movement recovery for BCI and robot-assisted upper-extremity training after stroke. Neurorehabil Neural Repair 27(1):53–62. doi:10.1177/1545968312445910

    Article  PubMed  Google Scholar 

  47. Tanji J (2001) Sequential organization of multiple movements: involvement of cortical motor areas. Annu Rev Neurosci 24:631–651. doi:10.1146/annurev.neuro.24.1.631

    Article  CAS  PubMed  Google Scholar 

  48. Kaeser M, Wyss AF, Bashir S, Hamadjida A, Liu Y, Bloch J, Brunet JF, Belhaj-Saif A, Rouiller EM (2010) Effects of unilateral motor cortex lesion on ipsilesional hand’s reach and grasp performance in monkeys: relationship with recovery in the contralesional hand. J Neurophysiol 103(3):1630–1645. doi:10.1152/jn.00459.2009

    Article  PubMed  Google Scholar 

  49. Kantak SS, Stinear JW, Buch ER, Cohen LG (2012) Rewiring the brain: potential role of the premotor cortex in motor control, learning, and recovery of function following brain injury. Neurorehabil Neural Repair 26(3):282–292. doi:10.1177/1545968311420845

    Article  PubMed  Google Scholar 

  50. Hoshi E, Tanji J (2004) Area-selective neuronal activity in the dorsolateral prefrontal cortex for information retrieval and action planning. J Neurophysiol 91(6):2707–2722. doi:10.1152/jn.00904.2003

    Article  PubMed  Google Scholar 

  51. Hoshi E, Tanji J (2004) Differential roles of neuronal activity in the supplementary and presupplementary motor areas: from information retrieval to motor planning and execution. J Neurophysiol 92(6):3482–3499. doi:10.1152/jn.00547.2004

    Article  PubMed  Google Scholar 

  52. Nudo RJ, Plautz EJ, Milliken GW (1997) Adaptive plasticity in primate motor cortex as a consequence of behavioral experience and neuronal injury. Semin Neurosci 9:13–23. doi:10.1006/smns.1997.0102

    Article  Google Scholar 

  53. Friel KM, Barbay S, Frost SB, Plautz EJ, Hutchinson DM, Stowe AM, Dancause N, Zoubina EV, Quaney BM, Nudo RJ (2005) Dissociation of sensorimotor deficits after rostral versus caudal lesions in the primary motor cortex hand representation. J Neurophysiol 94(2):1312–1324. doi:10.1152/jn.01251.2004

    Article  PubMed  Google Scholar 

  54. Friel KM, Martin JH (2005) Role of sensory-motor cortex activity in postnatal development of corticospinal axon terminals in the cat. J Comp Neurol 485(1):43–56. doi:10.1002/cne.20483

    Article  PubMed  Google Scholar 

  55. Nudo RJ (2006) Mechanisms for recovery of motor function following cortical damage. Curr Opin Neurobiol 16(6):638–644. doi:10.1016/j.conb.2006.10.004

    Article  CAS  PubMed  Google Scholar 

  56. Adkins DL, Campos P, Quach D, Borromeo M, Schallert K, Jones TA (2006) Epidural cortical stimulation enhances motor function after sensorimotor cortical infarcts in rats. Exp Neurol 200(2):356–370. doi:10.1016/j.expneurol.2006.02.131

    Article  PubMed  Google Scholar 

  57. Adkins-Muir DL, Jones TA (2003) Cortical electrical stimulation combined with rehabilitative training: enhanced functional recovery and dendritic plasticity following focal cortical ischemia in rats. Neurol Res 25(8):780–788

    Article  PubMed  Google Scholar 

  58. Plautz EJ, Barbay S, Frost SB, Friel KM, Dancause N, Zoubina EV, Stowe AM, Quaney BM, Nudo RJ (2003) Post-infarct cortical plasticity and behavioral recovery using concurrent cortical stimulation and rehabilitative training: a feasibility study in primates. Neurol Res 25(8):801–810

    Article  PubMed  Google Scholar 

  59. Plow EB, Carey JR, Nudo RJ, Pascual-Leone A (2009) Invasive cortical stimulation to promote recovery of function after stroke: a critical appraisal. Stroke 40:1926–1931. doi:10.1161/STROKEAHA.108.540823

    Article  PubMed Central  PubMed  Google Scholar 

  60. Georgopoulos AP (1986) On reaching. Annu Rev Neurosci 9:147–170. doi:10.1146/annurev.ne.09.030186.001051

    Article  CAS  PubMed  Google Scholar 

  61. Georgopoulos AP, Kalaska JF, Caminiti R, Massey JT (1982) On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J Neurosci 2(11):1527–1537

    CAS  PubMed  Google Scholar 

  62. Georgopoulos AP, Schwartz AB, Kettner RE (1986) Neuronal population coding of movement direction. Science 233(4771):1416–1419

    Article  CAS  PubMed  Google Scholar 

  63. Brumberg JS, Wright EJ, Andreasen DS, Guenther FH, Kennedy PR (2011) Classification of intended phoneme production from chronic intracortical microelectrode recordings in speech-motor cortex. Front Neurosci 5:65. doi:10.3389/fnins.2011.00065

    PubMed Central  PubMed  Google Scholar 

  64. Carmena JM, Lebedev MA, Crist RE, O’Doherty JE, Santucci DM, Dimitrov DF, Patil PG, Henriquez CS, Nicolelis MA (2003) Learning to control a brain–machine interface for reaching and grasping by primates. PLoS Biol 1(2):E42. doi:10.1371/journal.pbio.0000042

    Article  PubMed Central  PubMed  Google Scholar 

  65. Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099):164–171. doi:10.1038/nature04970

    Article  CAS  PubMed  Google Scholar 

  66. Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P, Donoghue JP (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398):372–375. doi:10.1038/nature11076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Hebb DO (1949) The organization of behavior: a neuropsychological approach. Wiley, New York

    Google Scholar 

  68. Pittenger C, Kandel ER (2003) In search of general mechanisms for long-lasting plasticity: Aplysia and the hippocampus. Philos Trans R Soc Lond Ser B Biol Sci 358:757–763. doi: 10.1098/rstb.2002.1247

  69. Baranyi A, Feher O (1981) Synaptic facilitation requires paired activation of convergent pathways in the neocortex. Nature 290(5805):413–415

    Article  CAS  PubMed  Google Scholar 

  70. Frégnac Y, Shulz D, Thorpe S, Bienenstock E (1988) A cellular analogue of visual cortical plasticity. Nature 333(6171):367–370

    Article  PubMed  Google Scholar 

  71. Charpier S, Deniau JM (1997) In vivo activity-dependent plasticity at cortico-striatal connections: evidence for physiological long-term potentiation. Proc Natl Acad Sci U S A 94(13):7036–7040

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Jackson A, Mavoori J, Fetz EE (2006) Long-term motor cortex plasticity induced by an electronic neural implant. Nature 444:56–60. doi:10.1038/nature05226

    Article  CAS  PubMed  Google Scholar 

  73. Rebesco JM, Miller LE (2011) Stimulus-driven changes in sensorimotor behavior and neuronal functional connectivity application to brain–machine interfaces and neurorehabilitation. Prog Brain Res 192:83–102. doi:10.1016/B978-0-444-53355-5.00006-3

    Article  PubMed  Google Scholar 

  74. Shih JJ, Krusienski DJ, Wolpaw JR (2012) Brain–computer interfaces in medicine. Mayo Clin Proc 87(3):268–279. doi:10.1016/j.mayocp.2011.12.008

    Article  PubMed Central  PubMed  Google Scholar 

  75. Adkins DL, Hsu JE, Jones TA (2008) Motor cortical stimulation promotes synaptic plasticity and behavioral improvements following sensorimotor cortex lesions. Exp Neurol 212:14–28. doi:10.1016/j.expneurol.2008.01.031

    Article  PubMed Central  PubMed  Google Scholar 

  76. Baba T, Kameda M, Yasuhara T, Morimoto T, Kondo A, Shingo T, Tajiri N, Wang F, Miyoshi Y, Borlongan CV, Matsumae M, Date I (2009) Electrical stimulation of the cerebral cortex exerts antiapoptotic, angiogenic, and anti-inflammatory effects in ischemic stroke rats through phosphoinositide 3-kinase/Akt signaling pathway. Stroke 40:e598–e605. doi:10.1161/STROKEAHA.109.563627

    Article  PubMed  Google Scholar 

  77. Kleim JA, Bruneau R, VandenBerg P, MacDonald E, Mulrooney R, Pocock D (2003) Motor cortex stimulation enhances motor recovery and reduces peri-infarct dysfunction following ischemic insult. Neurol Res 25:789–793. doi:10.1179/016164103771953862

    Article  PubMed  Google Scholar 

  78. Yoon KJ, Oh BM, Kim DY (2012) Functional improvement and neuroplastic effects of anodal transcranial direct current stimulation (tDCS) delivered 1 day vs. 1 week after cerebral ischemia in rats. Brain Res 1452:61–72. doi:10.1016/j.brainres.2012.02.062

    Article  CAS  PubMed  Google Scholar 

  79. Henderson AK, Pittman QJ, Teskey GC (2012) High frequency stimulation alters motor maps, impairs skilled reaching performance and is accompanied by an upregulation of specific GABA, glutamate and NMDA receptor subunits. Neuroscience 215:98–113. doi:10.1016/j.neuroscience.2012.04.040

    Article  CAS  PubMed  Google Scholar 

  80. Jahanshahi A, Schonfeld L, Janssen ML, Hescham S, Kocabicak E, Steinbusch HW, van Overbeeke JJ, Temel Y (2013) Electrical stimulation of the motor cortex enhances progenitor cell migration in the adult rat brain. Exp Brain Res 231:165–177. doi:10.1007/s00221-013-3680-4

    Article  CAS  PubMed  Google Scholar 

  81. Teskey GC, Flynn C, Goertzen CD, Monfils MH, Young NA (2003) Cortical stimulation improves skilled forelimb use following a focal ischemic infarct in the rat. Neurol Res 25:794–800. doi:10.1179/016164103771953871

    Article  PubMed  Google Scholar 

  82. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21. doi:10.1016/j.neuron.2004.09.012

    Article  CAS  PubMed  Google Scholar 

  83. Feldman DE (2009) Synaptic mechanisms for plasticity in neocortex. Ann Rev Neurosci 32:33–55. doi:10.1146/annurev.neuro.051508.13551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Trepel C, Racine RJ (1998) Long-term potentiation in the neocortex of the adult, freely moving rat. Cereb Cortex 8:719–729

    Article  CAS  PubMed  Google Scholar 

  85. Racine RJ, Chapman CA, Trepel C, Teskey GC, Milgram NW (1995) Post-activation potentiation in the neocortex. IV. Multiple sessions required for induction of long-term potentiation in the chronic preparation. Brain Res 702:87–93

    Article  CAS  PubMed  Google Scholar 

  86. Hawes SL, Gillani F, Evans RC, Benkert EA, Blackwell KT (2013) Sensitivity to theta-burst timing permits LTP in dorsal striatal adult brain slice. J Neurophysiol 110:2027–2036. doi:10.1152/jn.00115.2013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Schiene K, Bruehl C, Zilles K, Qu M, Hagemann G, Witte OW (1996) Neuronal hyperexcitability and reduction of GABAA-receptor expression in the surround of cerebral photothrombosis. J Cereb Blood Flow Metab 16:906–914

    Article  CAS  PubMed  Google Scholar 

  88. Duker AP, Espay AJ (2013) Surgical treatment of Parkinson disease: past, present, and future. Neurol Clin 31:799–808. doi:10.1016/j.ncl.2013.03.007

    Article  PubMed Central  PubMed  Google Scholar 

  89. Afshar P, Khambhati A, Stanslaski S, Carlson D, Jensen R, Linde D, Dani S, Lazarewicz M, Cong P, Giftakis J, Stypulkowski P, Denison T (2012) A translational platform for prototyping closed-loop neuromodulation systems. Front Neural Circuits 6:117. doi:10.3389/fncir.2012.00117

    PubMed Central  PubMed  Google Scholar 

  90. Santos FJ, Costa RM, Tecuapetla F (2011) Stimulation on demand: closing the loop on deep brain stimulation. Neuron 72:197–198. doi:10.1016/j.neuron.2011.10.004

    Article  CAS  PubMed  Google Scholar 

  91. Jackson A, Zimmermann JB (2012) Neural interfaces for the brain and spinal cord-restoring motor function. Nat Rev Neurol 8:690–699. doi:10.1038/nrneurol.2012.219

    Article  CAS  PubMed  Google Scholar 

  92. Nishimura Y, Perlmutter SI, Fetz EE (2013) Restoration of upper limb movement via artificial corticospinal and musculospinal connections in a monkey with spinal cord injury. Front Neural Circuits 7:57. doi:10.3389/fncir.2013.00057

    Article  PubMed Central  PubMed  Google Scholar 

  93. Berger T, Song D, Chan R, Shin D, Marmarelis V, Hampson R, Sweatt A, Heck C, Liu C, Wills J, Lacoss J, Granacki J, Gerhardt G, Deadwyler S (2012) Role of the hippocampus in memory formation: restorative encoding memory integration neural device as a cognitive neural prosthesis. IEEE Pulse 3:17–22. doi:10.1109/MPUL.2012.2205775

    Article  PubMed  Google Scholar 

  94. Catani M, Mesulam M (2008) What is a disconnection syndrome? Cortex 44:911–913. doi:10.1016/j.cortex.2008.05.001

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randolph J. Nudo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Guggenmos, D.J., Nudo, R.J. (2015). Theoretical Basis for Closed-Loop Stimulation as a Therapeutic Approach to Brain Injury. In: Kansaku, K., Cohen, L., Birbaumer, N. (eds) Clinical Systems Neuroscience. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55037-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55037-2_6

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55036-5

  • Online ISBN: 978-4-431-55037-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics