Skip to main content

Lower Complexity of Secured WSN Networks

  • Chapter
  • First Online:
Developing Security Tools of WSN and WBAN Networks Applications

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 316))

Abstract

In this chapter, the WSN performance is investigated based on the most common WPANs technologies, the ZigBee and Bluetooth networks. Supper interleaving versions have been presented based on the encryption tools with an additional complexity is considered. These techniques are employed to produce performance enhancing with keeping the security capability. It discussed the traditional interleaving techniques for data and image transmission over fixed and mobile WSN. The mobility of WSN nodes challenges and feature also, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh S, Raghavendra CS (1998) PAMAS: Power Aware Multi-access Protocol with Signaling for ad hoc networks. ACM Comput Commun Rev 28(3):5–26

    Article  Google Scholar 

  2. Rappaport TS (1996) Wireless communications: principles and practice. Prentice Hall Communications Engineering and Emerging Technologies Series, Upper Saddle River

    Google Scholar 

  3. Perez-Vega C, Garcia JL (1997) A simple approach to a statistical path loss model for indoor communications. In: 27th European microwave conference and exhibition, Jurusalem, Israel, pp 617–623

    Google Scholar 

  4. Hansen J, Leuthold PE (2003) The mean received power in ad hoc networks and its dependence on geometrical quantities. IEEE Trans Ant Prop 51(9):2413–2419

    Article  Google Scholar 

  5. Howard SL, Schlegel C, Iniewski K (2006) Error control coding in low-power wireless sensor networks: when is ECC energy-efficient? EURASIP J Wirel Commun Netw 2006:074812. doi:10.1155/WCN/2006/74812

    Article  Google Scholar 

  6. Green DB, Obaidat AS (2002) An accurate line of sight propagation performance model for ad-hoc 802.11 wireless LAN (WLAN) devices. IEEE Intl Conf Commun (ICC) 5:3424–3428

    Google Scholar 

  7. Garello R, Montorsi G, Benedetto S, Cancellieri G (2001) Interleaver properties and their applications to the trellis complexity analysis of turbo codes. IEEE Trans Commun 1:793–807

    Article  Google Scholar 

  8. Abd El-Samie FE, Hassan ES, Zhu X, El-Khamy SE, Dessouky MI, El-Dolil SA (2010) A chaotic interleaving scheme for the continuous phase modulation based single-carrier frequency-domain equalization system. Wirel Pers Commun 62:183–199, Springer Science+Business Media, LLC

    Google Scholar 

  9. Hagenauer J, Papke L (1996) Iterative decoding of binary block and convolutional codes. IEEE Trans Inf Theory 42(2):429–445

    Google Scholar 

  10. Gibson JD (1993) Principles of digital and analog communications, 2nd edn. University of California, Santa Barbara. ISBN 0-02-341860-5

    Google Scholar 

  11. El-Bendary MAM, Abou-El-azm AE, El-Fishawy NA, Shawki F, El-Tokhy MAR, Abd El-Samie FE, Kazemian HB (2012) JPEG image transmission over mobile network with an efficient channel coding and interleaving. Int J Electron 99(11):1497–1518. doi:10.1080/00207217.2012.680786

    Article  Google Scholar 

  12. Kaplan JL, Yorke JA (1979) Lecture Notes Math 730:204

    Article  MathSciNet  Google Scholar 

  13. Dong Y, Liu L, Zhu C, Wang Y (2010) Image encryption algorithm based on chaotic mapping. In: 3rd IEEE international conference on computer science and information technology, ICCSIT, pp 289–291

    Google Scholar 

  14. Salleh M, Ibrahim S, Isnin IF (2003) Enhanced chaotic image encryption algorithm based on Baker’s map. IEEE Conf Circuit Syst 2:508–511

    Google Scholar 

  15. Yuan DF, Li ZW, Sui A, Luo J (2000) Performance of interleaved (2,1,7) convolutional codes in mobile image communication system. In: Proceedings of the IEEE wireless communications and networking conference (WCNC ’00), Chicago, vol 2, pp 634–637

    Google Scholar 

  16. Chan F, Haccoun D (1997) Adaptive viterbi decoding of convolutional codes over memoryless channels. IEEE Trans Commun 45(11):1389–1400

    Google Scholar 

  17. Benvenuto N, Bettella L, Marchesani R (1998) Performance of the viterbi algorithm for interleaved convolutional codes. IEEE Trans Veh Technol 47(3):919–923

    Google Scholar 

  18. Kong JJ, Parhi KK (2003) Interleaved convolutional code and its viterbi decoder architecture. EURASIP J Appl Signal Process 13:1328–1334

    Article  Google Scholar 

  19. Elkhazin A, Plataniotis K, Pasupathy S (2010) Irregular convolutional codes in multiantenna bit-interleaved coded modulation under iterative detection and decoding. IEEE Trans Veh Technol 59(7):3332–3341

    Google Scholar 

  20. Callegari S, Rovatti R (1999) Analog chaotic maps with sample-and-hold errors. IEICE Trans Fundam Electron Commun Comput Sci E82A(9):1754–1761

    Google Scholar 

  21. Wu Y, Yang G, Jin H, Noonan JP (2012) Image encryption using the two-dimensional logistic chaotic map. Electron Imaging 21(1):013014. doi:10.1117/1.JEI.21.1.013014

    Article  Google Scholar 

  22. Golmie N, Van Dck RE, Soltanian A (2001) Interference of Bluetooth and IEEE 802.11: simulation modeling and performance evaluation. In: Proceedings ACM international workshop on modeling, analysis, and simulation of wireless and mobile systems, Italy

    Google Scholar 

  23. Chui TY, Thaler F, Scanlon WG (2002) A novel channel modeling technique for performance analysis of Bluetooth baseband packets. In: Proceedings of the IEEE ICC conference, New York

    Google Scholar 

  24. Hall EK, Wilson G (2001) Stream-oriented turbo codes. IEEE Trans Inf Theory 47(5):1813–1831

    Article  MATH  MathSciNet  Google Scholar 

  25. Haccounand D, Begin G (1989) High-rate punctured convolutional codes for viterbi and sequential decoding. IEEE Trans Commun 37(11):1113–1125

    Google Scholar 

  26. Proakis JG (2001) Digital communications. McGraw-Hill Series in Electrical and Computer Engineering, University of Michigan, Ann Arbor, New York

    Google Scholar 

  27. Voyatzis G, Pitas I (1998) Chaotic watermarks for embedding in the spatial digital image domain. Proc IEEE Int Conf Image Process 2:432–436

    Google Scholar 

  28. El-Bendary MAM, Abou-El-azm AE, El-Fishawy NA, Shawki F, Abd-ElSamie FE, El-Tokhy MAR, Kazemian HB (2012) Performance of the audio signals transmission over wireless networks with the channel interleaving considerations. EURASIP J Audio Speech Music Process 2012:4

    Article  Google Scholar 

  29. Lu W, Tao H, Chung F (2005) Chaos-based spread spectrum robust watermarking in DWT domain. In: Fourth international conference on machine learning and cybernetics, Guangzhou, 18–21 Aug 2005

    Google Scholar 

  30. Herzberg H (2006) Multilevel turbo coding with short interleavers. IEEE J Sel Areas Commun 16:303–309

    Article  Google Scholar 

  31. Kaiser M, Fong W, Sikora M (2009) A comparison of decoding latency for block and convolutional codes. In: Proceeding, ISCTA’09, Ambleside

    Google Scholar 

  32. Lin L, Cheng RS (1997) Improvements in SOVA-based decoding for turbo codes. IEEE Global Telecommun Conf (Globecom) 2:644–648

    Google Scholar 

  33. Jakes WC (1975) Microwave mobile communications. Wiley, New York. ISBN 0-471-43720-4

    Google Scholar 

  34. Forney GD (1971) Burst-correcting codes for the classic bursty channel. IEEE Trans Commun COM-19:772–781

    Article  Google Scholar 

  35. Vafi S, Wysocki TA (2006) Application of convolutional interleavers in turbo codes with unequal error protection. JTIT, J Telecommun Inf Technol 1:17–23

    Google Scholar 

  36. Vafi S, Wysocki T (2005) Performance of convolutional interleavers with different spacing parameters in turbo codes. In: Proceedings of the 6th Australian workshop on communications theory, Brisbane, Qld pp 8–12

    Google Scholar 

  37. Shiyamala S, Rajamani V (2010) A novel area efficient folded modified convolutional interleaving architecture for MAP decoder. Int J Comput Appl 9(9):975–8887

    Google Scholar 

  38. Zhang H, Wang L, Yuan Q, Wang H, Yu J (2004) A chaotic interleaver used in turbo codes. Int Conf Commun Circuit Syst (ICCCAS) 1:27–29

    Google Scholar 

  39. Xuelan Z, Weiyan L, Guangzeng F (2010) Applying chaotic maps to interleaving scheme design in BICM-ID. Chin J Electron 19(3)

    Google Scholar 

  40. Luby M, Mitzenmacher M, Shokrollahi MA, Spielman DA (2001) Efficient erasure correcting codes. IEEE Trans Inf Theory 47(2):569–584

    Article  MATH  MathSciNet  Google Scholar 

  41. Počta P (2011) The combined effect of signal strength and background traffic load on speech quality in IEEE 802.11 WLAN. Radioengineering 20(1):174–178

    Google Scholar 

  42. Mohamed MAM, Abou El-Azm A, El-Fishwy N, El-Tokhy MAR, Abd El-Samie FE (2008) Optimization of Bluetooth packet format for efficient performance. Progr Electromagn Res M 1:101–110

    Article  Google Scholar 

  43. Aldrich J (1995) Correlations genuine and spurious in Pearson and Yule. Stat Sci 10:364–376. http://www.jstor.org/stable/2246135

  44. Galli S, Famolari D, Kodama T (2004) Bluetooth: channel coding considerations. In: IEEE vehicular technology conference VTC pp 2605–2609

    Google Scholar 

  45. El-Bendary MAM, Abou-El-azm AE, El-Fishawy NA, Shawki F, El-Tokhy M, Abd El-Samie FE, Kazemian HB (2011) Enhancing the image transmission over wireless networks through a novel interleaver. KSII Trans Internet Inf Syst 5(9):1528–1543

    Google Scholar 

  46. El-Bendary MAM, El-Tokhy MAR (2013) An efficient burst error combating for image transmission over mobile WPANs. World Acad Sci Eng Technol Int J Electric Electron Sci Eng 7(5)

    Google Scholar 

  47. Ozarow L, Shamai S, Wyner AD (1994) Information theoretic considerations for cellar mobile radio. IEEE Trans Veh Tech 43:359–378

    Article  Google Scholar 

  48. Pekhteryev G, Sahinoglu Z, Orlik P, Bhatti G (2005) Image transmission over IEEE 802.15.4 and ZigBee networks. In: IEEE ISCAS, Kobe

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

El-Bendary, M.A.M. (2015). Lower Complexity of Secured WSN Networks. In: Developing Security Tools of WSN and WBAN Networks Applications. Lecture Notes in Electrical Engineering, vol 316. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55069-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55069-3_6

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55068-6

  • Online ISBN: 978-4-431-55069-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics