Skip to main content

Glucose Metabolism and Its Controlling Mechanisms in Entamoeba histolytica

  • Chapter
  • First Online:
Amebiasis

Abstract

Entamoeba histolytica lacks the genes encoding the enzymes of the Krebs cycle and oxidative phosphorylation; therefore, glycolysis is the main pathway for ATP supply and for providing carbon skeleton precursors for the synthesis of macromolecules. External glucose is metabolized through a fermentative glycolysis producing mainly ethanol and, to a lower extent, acetate as end products. The pathway in the parasite deviates in several aspects from the typical glycolysis present in mammals and yeasts, for instance, (1) the use of pyrophosphate as high-energy phosphate donor in several reactions; (2) the feasibility of thermodynamic reversibility of all pathway reactions under physiological conditions; and (3) the presence of fermentative enzymes similar to those of anaerobic bacteria. These and other enzyme peculiarities impose different mechanisms of control of the glycolytic fermentative flux in the parasite compared to the highly allosterically regulated glycolysis in other eukaryotic cells. In this chapter, we summarize the previous and current knowledge of the carbohydrate metabolism in E. histolytica and analyze its underlying controlling mechanisms by applying the fundamentals of metabolic control analysis (MCA).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Band RN, Cirrito H (1979) Growth response of axenic Entamoeba histolytica to hydrogen, carbon dioxide, and oxygen. J Protozool 26:282–286

    Article  CAS  PubMed  Google Scholar 

  2. Gillin FD, Diamond LS (1981) Entamoeba histolytica and Giardia lamblia: effects of cysteine and oxygen tension on trophozoite attachment to glass and survival in culture media. Exp Parasitol 52(1):9–17

    Article  CAS  PubMed  Google Scholar 

  3. Taylor EW, Bentley S, Youngs D, Keighley MR (1981) Bowel preparation and the safety of colonoscopic polypectomy. Gastroenterology 81(1):1–4

    CAS  PubMed  Google Scholar 

  4. Ladas SD, Karamanolis G, Ben-Soussan E (2007) Colonic gas explosion during therapeutic colonoscopy with electrocautery. World J Gastroenterol 13:5295–5298

    Article  PubMed Central  PubMed  Google Scholar 

  5. Reeves RE (1984) Metabolism of Entamoeba histolytica Schaudinn, 1903. Adv Parasitol 23:105–142

    Article  CAS  PubMed  Google Scholar 

  6. Clark CG, Alsmark UC, Tazreiter M, Saito-Nakano Y, Ali V, Marion S, Weber C, Mukherjee C, Bruchhaus I, Tannich E, Leippe M, Sicheritz-Ponten T, Foster PG, Samuelson J, Noël CJ, Hirt RP, Embley TM, Gilchrist CA, Mann BJ, Singh U, Ackers JP, Bhattacharya S, Bhattacharya A, Lohia A, Guillén N, Duchêne M, Nozaki T, Hall N (2007) Structure and content of the Entamoeba histolytica genome. Adv Parasitol 65:51–190

    Article  CAS  PubMed  Google Scholar 

  7. Saavedra E, Encalada R, Pineda E, Jasso-Chávez R, Moreno-Sánchez R (2005) Glycolysis in Entamoeba histolytica. Biochemical characterization of recombinant glycolytic enzymes and flux control analysis. FEBS J 272:1767–1783

    Article  CAS  PubMed  Google Scholar 

  8. Serrano R, Reeves RE (1974) Glucose transport in Entamoeba histolytica. Biochem J 144:43–48

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Serrano R, Reeves RE (1975) Physiological significance of glucose transport in Entamoeba histolytica. Exp Parasitol 37:411–416

    Article  CAS  PubMed  Google Scholar 

  10. Saavedra E, Marin-Hernandez A, Encalada R, Olivos A, Mendoza-Hernandez G, Moreno-Sánchez R (2007) Kinetic modeling can describe in vivo glycolysis in Entamoeba histolytica. FEBS J 274:4922–4940

    Article  CAS  PubMed  Google Scholar 

  11. Reeves RE, Montalvo F, Sillero A (1967) Glucokinase from Entamoeba histolytica and related organism. Biochemistry 6:1752–1760

    Article  CAS  PubMed  Google Scholar 

  12. Kroschewski H, Ortner S, Steipe B, Scheiner O, Wiedermann G, Duchêne M (2000) Differences in substrate specificity and kinetic properties of the recombinant hexokinases HXK 1 and HXK 2 from Entamoeba histolytica. Mol Biochem Parasitol 105:71–80

    Article  CAS  PubMed  Google Scholar 

  13. Marín-Hernández A, Gallardo-Pérez JC, Rodríguez-Enríquez S, Encalada R, Moreno-Sánchez R, Saavedra E (2011) Modeling cancer glycolysis. Biochim Biophys Acta 1807:755–767

    Article  PubMed  Google Scholar 

  14. Reeves RE, South DJ, Blytt HJ, Warren LG (1974) Pyrophosphate: d-fructose 6-phosphate 1-phosphotransferase. A new enzyme with the glycolytic function of 6-phosphofructokinase. J Biol Chem 249:7737–7741

    CAS  PubMed  Google Scholar 

  15. Reeves RE, Serrano R, South DJ (1976) 6-Phosphofructokinase (pyrophosphate). Properties of the enzyme from Entamoeba histolytica and its reaction mechanism. J Biol Chem 251:2958–2962

    CAS  PubMed  Google Scholar 

  16. Deng Z, Huang M, Singh K, Albach RA, Latshaw SP, Chang KP, Kemp RG (1998) Cloning and expression of the gene for the active PPi-dependent phosphofructokinase of Entamoeba histolytica. Biochem J 329:659–664

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Chi AS, Deng Z, Albach RA, Kemp RG (2001) The two phosphofructokinase gene products of Entamoeba histolytica. J Biol Chem 276:19974–19981

    Article  CAS  PubMed  Google Scholar 

  18. Kalra IS, Dutta G, Mohan-Rao VK (1969) Entamoeba histolytica: effect of metal ions, metal binders, therapeutics, antibiotics, and inhibitors on aldolase activity. Exp Parasitol 24:26–31

    Article  CAS  PubMed  Google Scholar 

  19. Landa A, Rojo-Domínguez A, Jiménez L, Fernández-Velasco DA (1997) Sequencing, expression and properties of triosephosphate isomerase from Entamoeba histolytica. Eur J Biochem 247:348–355

    Article  CAS  PubMed  Google Scholar 

  20. Reeves RE, South D (1974) Phosphoglycerate kinase (GTP). An enzyme from Entamoeba histolytica selective for guanine nucleotides. Biochem Biophys Res Commun 58:1053–1057

    Article  CAS  PubMed  Google Scholar 

  21. Encalada R, Rojo-Dominguez A, Rodriguez-Zavala JS, Pardo JP, Quezada H, Moreno-Sánchez R, Saavedra E (2009) Molecular basis of the unusual catalytic preference for GDP/GTP in Entamoeba histolytica 3-phosphoglycerate kinase. FEBS J 276:2037–2047

    Article  CAS  PubMed  Google Scholar 

  22. Reeves RE (1968) A new enzyme with the glycolytic function of pyruvate kinase. J Biol Chem 263:3202–3204

    Google Scholar 

  23. Saavedra-Lira E, Ramirez-Silva L, Pérez-Montford R (1998) Expression and characterization of recombinant pyruvate phosphate dikinase from Entamoeba histolytica. Biochim Biophys Acta 1382:47–54

    Article  CAS  PubMed  Google Scholar 

  24. Saavedra E, Olivos A, Encalada R, Moreno-Sánchez R (2004) Entamoeba histolytica: kinetic and molecular evidence of a previously unidentified pyruvate kinase. Exp Parasitol 106:11–21

    Article  CAS  PubMed  Google Scholar 

  25. Pineda E, Encalada R, Rodriguez-Zavala JS, Olivos-Garcia A, Moreno-Sánchez R, Saavedra E (2010) Pyruvate:ferredoxin oxidoreductase and bifunctional aldehyde-alcohol dehydrogenase are essential for energy metabolism under oxidative stress in Entamoeba histolytica. FEBS J 277:3382–3395

    Article  CAS  PubMed  Google Scholar 

  26. Pineda E, Encalada R, Olivos-García A, Néquiz M, Moreno-Sánchez R, Saavedra E (2013) The bifunctional aldehyde-alcohol dehydrogenase controls ethanol and acetate production in Entamoeba histolytica under aerobic conditions. FEBS Lett 587:178–184

    Article  CAS  PubMed  Google Scholar 

  27. Espinosa A, Yan L, Zhang Z, Foster L, Clark D, Li E, Stanley SL Jr (2001) The bifunctional Entamoeba histolytica alcohol dehydrogenase 2 (EhADH2) protein is necessary for amebic growth and survival and requires an intact C-terminal domain for both alcohol dehydrogenase and acetaldehyde dehydrogenase activity. J Biol Chem 276:20136–20143

    Article  CAS  PubMed  Google Scholar 

  28. Bruchhaus I, Tannich E (1994) Purification and molecular characterization of the NAD+-dependent acetaldehyde/alcohol dehydrogenase from Entamoeba histolytica. Biochem J 303:743–748

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Yong TS, Li E, Clark D, Stanley SL Jr (1996) Complementation of an Escherichia coli adhE mutant by the Entamoeba histolytica EhADH2 gene provides a method for the identification of new antiamebic drugs. Proc Natl Acad Sci USA 93:6464–6469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Reeves RE, Guthrie JD (1975) Acetate kinase (pyrophosphate). A fourth pyrophosphate-dependent kinase from Entamoeba histolytica. Biochem Biophys Res Commun 66:1389–1395

    Article  CAS  PubMed  Google Scholar 

  31. Moreno-Sánchez R, Encalada R, Marin-Hernandez A, Saavedra E (2008) Experimental validation of metabolic pathway modeling. FEBS J 275:3454–3469

    Article  PubMed  Google Scholar 

  32. Moreno-Sánchez R, Saavedra E, Rodríguez-Enríquez S, Olín-Sandoval V (2008) Metabolic control analysis: a tool for designing strategies to manipulate metabolic pathways. J Biomed Biotechnol 2008:597913

    Article  PubMed Central  PubMed  Google Scholar 

  33. Ortner S, Plaimauer B, Binder M, Scheiner O, Wiedermann G, Duchêne M (1995) Molecular analysis of two hexokinase isoenzymes from Entamoeba histolytica. Mol Biochem Parasitol 73(1-2):189–198

    Article  CAS  PubMed  Google Scholar 

  34. Sargeaunt PG (1987) Zymodemes of Entamoeba histolytica. Parasitol Today 3(5):158

    Article  CAS  PubMed  Google Scholar 

  35. Ortner S, Clark CG, Binder M, Scheiner O, Wiedermann G, Duchêne M (1997) Molecular biology of hexokinases isoenzyme pattern that distinguishes pathogenic Entamoeba histolytica from nonpathogenic Entamoeba dispar. Mol Biochem Parasitol 86:85–94

    CAS  PubMed  Google Scholar 

  36. Wilson JE (2003) Isozymes of mammalian hexokinase: structure, subcellular localization and metabolic function. J Exp Biol 206:2049–2057

    Article  CAS  PubMed  Google Scholar 

  37. Razmjou E, Haghighi A, Rezaian M, Kobayashi S, Nozaki T (2006) Genetic diversity of glucose phosphate isomerase from Entamoeba histolytica. Parasitol Int 55:307–311

    Article  CAS  PubMed  Google Scholar 

  38. Moreno-Sánchez R, Marín-Hernández A, Gallardo-Pérez JC, Quezada H, Encalada R, Rodríguez-Enríquez S, Saavedra E (2012) Phosphofructokinase type 1 kinetics, isoform expression, and gene polymorphisms in cancer cells. J Cell Biochem 113(5):1692–1703

    PubMed  Google Scholar 

  39. Bruchhaus I, Jacobs T, Denart M, Tannich E (1996) Pyrophosphate-dependent phosphofructokinase of Entamoeba histolytica: molecular cloning, recombinant expression and inhibition by pyrophosphate analogues. Biochem J 316:57–63

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Teusink B, Walsh MC, van Dam K, Westerhoff HV (1998) The danger of metabolic pathways with turbo design. Trends Biochem Sci 23:162–169

    Article  CAS  PubMed  Google Scholar 

  41. Chi A, Kemp RG (2000) The primordial high energy compound: ATP or inorganic pyrophosphate? J Biol Chem 275:35677–35679

    Article  CAS  PubMed  Google Scholar 

  42. Susskind BM, Warren LG, Reeves RE (1982) A pathway for the interconversion of hexose and pentose in the parasitic amoeba Entamoeba histolytica. Biochem J 204:191–196

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Sánchez L, Horner D, Moore D, Henze K, Embley T, Müller M (2002) Fructose-1,6-biphosphate aldolases in amitochondriate protists constitute a single protein subfamily with eubacterial relationships. Gene (Amst) 295:51–59

    Article  Google Scholar 

  44. Rodríguez-Romero A, Hernández-Santoyo A, del Pozo YL, Kornhauser A, Fernández-Velasco DA (2002) Structure and inactivation of triosephosphate isomerase from Entamoeba histolytica. J Mol Biol 322:669–675

    Article  PubMed  Google Scholar 

  45. Alvarez AH, Martinez-Cadena G, Silva ME, Saavedra E, Avila EE (2007) Entamoeba histolytica: ADP-ribosylation of secreted glyceraldehyde-3-phosphate dehydrogenase. Exp Parasitol 117:349–356

    Article  CAS  PubMed  Google Scholar 

  46. Collingridge PW, Brown RW, Ginger ML (2010) Moonlighting enzymes in parasitic protozoa. Parasitology 137:1467–1475

    Article  CAS  PubMed  Google Scholar 

  47. Sirover MA (2011) On the functional diversity of glyceraldehyde-3-phosphate dehydrogenase: biochemical mechanisms and regulatory control. Biochim Biophys Acta 1810:741–751

    Article  CAS  PubMed  Google Scholar 

  48. Husain A, Sato D, Jeelani G, Soga T, Nozaki T (2012) Dramatic increase in glycerol biosynthesis upon oxidative stress in the anaerobic protozoan parasite Entamoeba histolytica. PLoS Negl Trop Dis 6:e1831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Tovy A, Siman-Tov R, Gaentzsch R, Helm M, Ankri S (2010) A new nuclear function of the Entamoeba histolytica glycolytic enzyme enolase: the metabolic regulation of cytosine-5 methyltransferase 2 (Dnmt2) activity. PLoS Pathog 6:e1000775

    Article  PubMed Central  PubMed  Google Scholar 

  50. Segovia-Gamboa NC, Talamás-Rohana P, Ángel-Martínez A, Cázares-Raga FE, González-Robles A, Hernández-Ramírez VI, Martínez-Palomo A, Chávez-Munguía B (2011) Differentiation of Entamoeba histolytica: a possible role for enolase. Exp Parasitol 129:65–71

    Article  CAS  PubMed  Google Scholar 

  51. Reeves RE (1970) Phosphopyruvate carboxylase from Entamoeba histolytica. Biochim Biophys Acta 220:346–349

    Article  CAS  PubMed  Google Scholar 

  52. Reeves RE, Warren LG, Susskind B, Lo HS (1977) An energy-conserving pyruvate-to-acetate pathway in Entamoeba histolytica. Pyruvate synthase and a new acetate thiokinase. J Biol Chem 252:726–731

    CAS  PubMed  Google Scholar 

  53. Lo HS, Reeves RE (1978) Pyruvate-to-ethanol pathway in Entamoeba histolytica. Biochem J 171:225–230

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Wassmann C, Hellberg A, Tannich E, Bruchhaus I (1999) Metronidazole resistance in the protozoan parasite Entamoeba histolytica is associated with increased expression of iron-containing superoxide dismutase and peroxiredoxin and decreased expression of ferredoxin 1 and flavin reductase. J Biol Chem 274:26051–26056

    Article  CAS  PubMed  Google Scholar 

  55. Imlay JA (2006) Iron-sulphur clusters and the problem with oxygen. Mol Microbiol 59:1073–1082

    Article  PubMed  Google Scholar 

  56. Ramos-Martínez E, Olivos-Garcia A, Saavedra E, Nequiz M, Sanchez EC, Tello E, El-Hafidi M, Saralegui A, Pineda E, Delgado J et al (2009) Entamoeba histolytica: oxygen resistance and virulence. Int J Parasitol 39:693–702

    Article  PubMed  Google Scholar 

  57. Bringaud F, Ebikeme C, Boshart M (2010) Acetate and succinate production in amoebae, helminths, diplomonads, trichomonads and trypanosomatids: common and diverse metabolic strategies used by parasitic lower eukaryotes. Parasitology 137:1315–1331

    Article  CAS  PubMed  Google Scholar 

  58. Avila EE, Martínez-Alcaraz ER, Barbosa-Sabanero G, Rivera-Baron EI, Arias-Negrete S, Zazueta-Sandoval R (2002) Subcellular localization of the NAD+-dependent alcohol dehydrogenase in Entamoeba histolytica trophozoites. J Parasitol 88(2):217–222

    CAS  PubMed  Google Scholar 

  59. Reyes-López M, Bermudez-Cruz RM, Avila EE, de la Garza M (2011) Acetaldehyde/alcohol dehydrogenase-2 (EhADH2) and clathrin are involved in internalization of human transferrin by Entamoeba histolytica. Microbiology 157:209–219

    Article  PubMed  Google Scholar 

  60. Leitsch D, Williams CF, Lloyd D, Duchêne M (2013) Unexpected properties of NADP-dependent secondary alcohol dehydrogenase (ADH-1) in Trichomonas vaginalis and other microaerophilic parasites. Exp Parasitol 134(3):374–380

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Field J, Rosenthal B, Samuelson J (2000) Early lateral transfer of genes encoding malic enzyme, acetyl-CoA synthetase and alcohol dehydrogenases from anaerobic prokaryotes to Entamoeba histolytica. Mol Microbiol 38:446–455

    Article  CAS  PubMed  Google Scholar 

  62. Fowler ML, Ingram-Smith C, Smith KS (2012) Novel pyrophosphate-forming acetate kinase from the protist Entamoeba histolytica. Eukaryot Cell 11:1249–1256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Takeuchi T, Weinbach EC, Diamond LS (1977) Entamoeba histolytica: localization and characterization of phosphoglucomutase, uridine diphosphate glucose pyrophosphorylase, and glycogen synthase. Exp Parasitol 43(1):115–121

    Article  CAS  PubMed  Google Scholar 

  64. Ortner S, Binder M, Scheiner O, Wiedermann G, Duchêne M (1997) Molecular and biochemical characterization of phosphoglucomutases from Entamoeba histolytica and Entamoeba dispar. Mol Biochem Parasitol 90(1):121–129

    Article  CAS  PubMed  Google Scholar 

  65. Martínez LI, Piattoni CV, Garay SA, Rodrígues DE, Guerrero SA, Iglesias AA (2011) Redox regulation of UDP-glucose pyrophosphorylase from Entamoeba histolytica. Biochimie 93(2):260–268

    Article  PubMed  Google Scholar 

  66. Takeuchi T, Weinbach EC, Diamond LS (1977) Entamoeba histolytica: localization and characterization of phosphorylase and particulate glycogen. Exp Parasitol 43(1):107–114

    Article  CAS  PubMed  Google Scholar 

  67. Samanta SK, Ghosh SK (2012) The chitin biosynthesis pathway in Entamoeba and the role of glucosamine-6-P isomerase by RNA interference. Mol Biochem Parasitol 186:60–68

    Article  CAS  PubMed  Google Scholar 

  68. Jeelani G, Sato D, Husain A, Escueta-de Cadiz A, Sugimoto M, Soga T, Suematsu M, Nozaki T (2012) Metabolic profiling of the protozoan parasite Entamoeba invadens revealed activation of unpredicted pathway during encystation. PLoS One 7:e37740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Aguilar-Díaz H, Díaz-Gallardo M, Laclette JP, Carrero JC (2010) In vitro induction of Entamoeba histolytica cyst-like structures from trophozoites. PLoS Negl Trop Dis 4:e607

    Article  PubMed Central  PubMed  Google Scholar 

  70. Nozaki T, Ali V, Tokoro M (2005) Sulfur-containing amino acid metabolism in parasitic protozoa. Adv Parasitol 60:1–99

    Article  PubMed  Google Scholar 

  71. Fahey RC, Newton GL, Arrick B, Overdank-Bogart T, Aley SB (1984) Entamoeba histolytica: a eukaryote without glutathione metabolism. Science 224(4644):70–72

    Article  CAS  PubMed  Google Scholar 

  72. Zuo X, Coombs GH (1995) Amino acid consumption by the parasitic, amoeboid protists Entamoeba histolytica and E. invadens. FEMS Microbiol Lett 130:253–258

    Article  CAS  PubMed  Google Scholar 

  73. Fell D (1997) Understanding the control of metabolism. Portland Press, London

    Google Scholar 

  74. Westerhoff HV (2011) Systems biology left and right. Methods Enzymol 500:3–11

    Article  CAS  PubMed  Google Scholar 

  75. Hübner K, Sahle S, Kummer U (2011) Applications and trends in systems biology in biochemistry. FEBS J 278:2767–2857

    Article  PubMed  Google Scholar 

  76. Bakker BM, Michels PA, Opperdoes FR, Westerhoff HV (1999) What controls glycolysis in bloodstream form Trypanosoma brucei? J Biol Chem 274:14551–14559

    Article  CAS  PubMed  Google Scholar 

  77. Snoep JL (2005) The silicon cell initiative: working towards a detailed kinetic description at the cellular level. Curr Opin Biotechnol 16:336–343

    Article  CAS  PubMed  Google Scholar 

  78. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI: a COmplex PAthway SImulator. Bioinformatics 22:3067–3074

    Article  CAS  PubMed  Google Scholar 

  79. Hornberg JJ, Bruggeman FJ, Bakker BM, Westerhoff HV (2007) Metabolic control analysis to identify optimal drug targets. Prog Drug Res 64:172–189

    Google Scholar 

  80. Moreno-Sánchez R, Saavedra E, Rodríguez-Enríquez S, Gallardo-Pérez JC, Quezada H, Westerhoff HV (2010) Metabolic control analysis indicates a change of strategy in the treatment of cancer. Mitochondrion 10:626–639

    Article  PubMed  Google Scholar 

  81. Olin-Sandoval V, González-Chávez Z, Berzunza-Cruz M, Martínez I, Jasso-Chávez R, Becker I, Espinoza B, Moreno-Sánchez R, Saavedra E (2012) Drug target validation of the trypanothione pathway enzymes through metabolic modelling. FEBS J 279:1811–1833

    Article  CAS  PubMed  Google Scholar 

  82. Saucedo-Mendiola ML, Salas-Pacheco JM, Nájera H, Rojo-Domínguez A, Yépez-Mulia L, Avitia-Domínguez C, Téllez-Valencia A (2013) Discovery of Entamoeba histolytica hexokinase 1 inhibitors through homology modeling and virtual screening. J Enzyme Inhib Med Chem. doi:10.3109/14756366.2013.779265

    PubMed  Google Scholar 

Download references

Acknowledgments

Research in the authors’ laboratory received financial support from CONACyT-México (grants No. 83084 and 178638 to E.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma Saavedra Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Pineda, E., Encalada, R., Vázquez, C., González, Z., Moreno-Sánchez, R., Saavedra, E. (2015). Glucose Metabolism and Its Controlling Mechanisms in Entamoeba histolytica . In: Nozaki, T., Bhattacharya, A. (eds) Amebiasis. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55200-0_20

Download citation

Publish with us

Policies and ethics