Skip to main content

Forefront of Nanofibers: High Strength Fibers and Optoelectronic Applications

  • Chapter
  • First Online:
High-Performance and Specialty Fibers

Abstract

Nanofibrous materials, which are some of the one-dimensional nanomaterials, have unique properties compared to their bulk solids (e.g., high specific surface area, high electrical conductivity, and good electrochemical activity). They are easy to form a 2-D or 3-D network structure. This network structure enables an efficient charge transport through the network backbone and an efficient chemical reaction at the surface. In addition, nanofiber assemblies (nanofiber yarns or nanofiber webs) provide good mechanical properties and good handling characteristics. This chapter highlights two topics in nanofiber applications, i.e., high strength nanofibers and optoelectronic applications of nanofiber networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Matsumoto, A. Tanioka, Surface electrochemistry of electrospun nanofibers, in Electrical Phenomena at Interfaces and Biointerfaces: Fundamentals and Applications in Nano-, Bio-, and Environmental Sciences, ed. by H. Ohshima, 1st edn. (Wiley, Hoboken, 2012)

    Google Scholar 

  2. A.L. Yarin, B. Pourdeyhimi, S. Ramakrishna, Fundamentals and Applications of Micro-and Nanofibers (Cambridge University Press, Cambridge, 2014)

    Book  Google Scholar 

  3. H. Matsumoto, A. Tanioka, Functionality in electrospun nanofibrous membranes based on fiber’s size, surface area, and molecular orientation. Membranes 1, 249–264 (2011)

    Article  Google Scholar 

  4. M.K. Shin, B. Lee, S.H. Kim, J.A. Lee, G.M. Spinks, S. Gambhir, G.G. Wallace, M.E. Kozlov, R.H. Baughman, S.J. Kim, Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes. Nat. Commun. 3, 650 (2012). doi:10.1038/ncomms1661

    Article  Google Scholar 

  5. E. Yasuda, A. Oya, S. Komura, S. Tomonoh, T. Nishizawa, S. Nagata, T. Akatsu, Single domain oval carbon nanofiber prepared from a polymer blend process. Carbon 50, 1432–1434 (2012). doi:10.1016/j.carbon.2011.10.019

    Article  Google Scholar 

  6. S. Imaizumi, H. Matsumoto, Y. Konosu, K. Tsuboi, M. Minagawa, A. Tanioka, K. Koziol, A. Windle, Top-down process based on electrospinning, twisting, and heating for producing one-dimensional carbon nanotube assembly. ACS Appl. Mater. Interfaces 3, 469–475 (2011). doi:10.1021/am101046v

    Article  Google Scholar 

  7. N. Behabtu, C.C. Young, D.E. Tsentalovich, O. Kleinerman, X. Wang, A.W.K. Ma, E.M. Bengio, R.F. ter Waarbeek, J.J. de Jong, R.E. Hoogerwerf, S.B. Fairchild, J.B. Ferguson, B. Maruyama, J. Kono, Y. Talmon, Y. Cohen, M.J. Otto, M. Pasquali, Strong, light, multifunctional fibers of carbon nanotubes with ultrahigh conductivity. Science 339, 182–186 (2013). doi:10.1126/science.1228061

    Article  Google Scholar 

  8. M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013). doi:10.1126/science.1222453

    Article  Google Scholar 

  9. M. Richard-Lacroix, C. Pellerin, Molecular orientation in electrospun fibers: from mats to single fibers. Macromolecules 46, 9473–9493 (2013). doi:10.1021/ma401681m

    Article  Google Scholar 

  10. D. Papkov, Y. Zou, M.N. Andalib, A. Goponenko, S.Z.D. Cheng, Y.A. Dzenis, Simultaneously strong and tough ultrafine continuous nanofibers. ACS Nano 7, 3324–3331 (2013). doi:10.1021/nn400028p

    Article  Google Scholar 

  11. H. Matsumoto, S. Imaizumi, Y. Konosu, M. Ashizawa, M. Minagawa, A. Tanioka, W. Lu, J.M. Tour, Electrospun composite nanofiber yarns containing oriented graphene nanoribbons. ACS Appl. Mater. Interfaces 5, 6225–6231 (2013). doi:10.1021/am401161b

    Article  Google Scholar 

  12. M. Inagaki, Y. Yang, F. Kang, Carbon nanofibers prepared via electrospinning. Adv. Mater. 24, 2547–2566 (2012). doi:10.1002/adma.201104940

    Article  Google Scholar 

  13. P. Hiralal, S. Imaizumi, H.E. Unalan, H. Matsumoto, M. Minagawa, M. Rouvala, A. Tanioka, G.A.J. Amaratunga, Nanomaterial-enhanced all-solid flexible zinc-carbon batteries. ACS Nano 4, 2730–2734 (2010). doi:10.1021/nn901391q

    Article  Google Scholar 

  14. K. Suzuki, H. Matsumoto, M. Minagawa, A. Tanioka, Hayashi et al., Carbon nanotubes on carbon fabrics for flexible field emitter arrays. Appl. Phys. Lett. 93, 053107 (2008). doi:10.1063/1.2967868

    Article  Google Scholar 

  15. H.E. Unalan, D. Wei, K. Suzuki, S. Dalal, P. Hiralal, H. Matsumoto et al., Photoelectrochemical cell using dye sensitized zinc oxide nanowires grown on carbon fibers. Appl. Phys. Lett. 93, 133116 (2008). doi:10.1063/1.2978957

    Article  Google Scholar 

  16. H. Cho, S.Y. Min, T.W. Lee, Electrospun organic nanofiber electronics and photonics. Macromol. Mater. Eng. 298, 475–486 (2013). doi:10.1002/mame.201200364

    Article  Google Scholar 

  17. H. Kuwayama, H. Matsumoto, K. Morota, M. Minagawa, A. Tanioka, Control over color of nanotextured coatings by electrospray deposition. Sen’i Gakkaishi 64, 1–4 (2008). doi:10.2115/fiber.64.1

    Article  Google Scholar 

  18. K. Tsuboi, H. Matsumoto, M. Minagawa, A. Tanioka, Light scattering assisted surface plasmon resonance at electrospun nanofiber-coated gold surfaces. Appl. Phys. Lett. 98, 241109/1–3 (2011). doi:10.1063/1.3601465

    Article  Google Scholar 

  19. Z. Yin, Q. Zheng, Controlled synthesis and energy applications of one-dimensional conducting polymer nanostructures: an overview. Adv. Energy Mater. 2, 179–218 (2012). doi:10.1002/aenm.201100560

    Article  Google Scholar 

  20. H. Matsumoto, Y. Konosu, S. Inagaki, Y. Saito, Functional design of nanofibrous materials and their applications in energy devices. IEICE Technical Report 114, OME2014-86 (2015)

    Google Scholar 

  21. K. Tsuboi, T. Fukawa, Y. Konosu, H. Matsumoto, A. Tanioka, Solution-processed nanowire coating for light management in organic solar cells. J. Nanotechnol. 2012, 387586 (2012). doi:10.1155/2012/387586

    Article  Google Scholar 

  22. K. Azuma, K. Sakajiri, H. Matsumoto, S. Kang, J. Watanabe, M. Tokita, Facile fabrication of transparent and conductive nanowire networks by wet chemical etching with electrospun nanofiber mask template. Mater. Lett. 115, 187–189 (2014). doi:10.1016/j.matlet.2013.10.054

    Article  Google Scholar 

  23. K. Kimura, H. Matsumoto, J. Hassoun, S. Panero, C. Scrosati, Y. Tominaga, A quaternary poly(ethylene carbonate)-lithium bis(trifluoromethane-sulfonyl)imide-ionic liquid-silica fiber composite polymer electrolyte for lithium batteries. Electrochim. Acta 175, 134–140 (2015). doi:10.1016/j.electacta.2015.03.117

    Article  Google Scholar 

  24. S. Cavaliere, S. Subianto, I. Savych, D.J. Jones, J. Rozière, Electrospinning: designed architectures for energy conversion and storage devices. Energy Environ. Sci. 4, 4761–4785 (2011). doi:10.1039/C1EE02201F

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetoshi Matsumoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Matsumoto, H. (2016). Forefront of Nanofibers: High Strength Fibers and Optoelectronic Applications. In: The Society of Fiber Science and Techno, J. (eds) High-Performance and Specialty Fibers. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55203-1_19

Download citation

Publish with us

Policies and ethics