Skip to main content

Polyamine Action on Plant Ion Channels and Pumps

  • Chapter
  • First Online:
Polyamines

Abstract

Polyamines (PAs) regulate growth and stress responses in plants. Among the vitally important roles of PAs is a modulation of ion transport across vacuolar and plasma membranes. PAs at micromolar concentrations block two major vacuolar cation channels, namely, the slow (SV = TPC1, tandem-pore calcium channel) and the fast (FV) activating ones. These effects are direct and fully reversible, with a potency descending in a sequence Spm > Spd > Put. However, effects of polyamines on the plasma membrane cation and K+-selective channels are hardly dependent on the PA species, display a relatively low affinity, and are indirect. Plants widely implement a mechanism, including the PAs export to the apoplast and catabolization therein, resulting in a generation of reactive oxygen species (ROS). ROS in turn activate a variety of ion conductances, underlying Ca2+ influx and/or K+ efflux across the plasma membrane. PAs assist hydroxyl radicals (·OH) in the activation of nonselective conductance, permeable for cations and small anions (ROSIC), and both ROS and PAs activate the Ca2+- and alter the H+-pumping across the plasma membrane. Possible implications for the stress tolerance of ion transport modulation by polyamines and their catabolites are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahern GP, Wang X, Miyares RL (2006) Polyamines are potent ligands for the capsaicin receptor TRPV1. J Biol Chem 281:8991–8995

    Article  CAS  PubMed  Google Scholar 

  • Alcázar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta (Berl) 231:1237–1249

    Article  Google Scholar 

  • An Z, Jing W, Liu Y, Zhang W (2008) Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba. J Exp Bot 59:815–825

    Article  CAS  PubMed  Google Scholar 

  • Beffagna N, Romani G, Sforza MC (2000) H+ fluxes at plasmalemma level: in vivo evidence for a significant contribution of the Ca2+-ATPase and for the involvements of its activity in the abscisic acid-induced changes in Egeria densa leaves. Plant Biol 2:168–175

    Article  CAS  Google Scholar 

  • Bonales-Alatorre E, Shabala S, Chen ZH, Pottosin I (2013) Reduced tonoplast fast-activating and slow-activating channel activity is essential for conferring salinity tolerance in a facultative halophyte, quinoa. Plant Physiol 162:940–952

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bose J, Pottosin II, Shabala SS, Palmgren MG, Shabala S (2011) Calcium efflux systems in stress signaling and adaptation in plants. Front Plant Sci 2:85

    Article  PubMed Central  PubMed  Google Scholar 

  • Brault M, Amiar Z, Pennarun AM, Monestiez M, Zhang Z, Cornel D, Dellis O, Knight H, Bouteau F, Rona JP (2004) Plasma membrane depolarization induced by ABA in Arabidopsis thaliana suspension cells involves reduction of proton pumping in addition to anion channel activation which are both Ca2+ dependent. Plant Physiol 135:231–243

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brüggemann LI, Pottosin II, Schönknecht G (1998) Cytoplasmic polyamines block the fast activating vacuolar cation channel. Plant J 16:101–105

    Article  Google Scholar 

  • Brüggemann LI, Pottosin II, Schönknecht G (1999a) Selectivity of the fast activating vacuolar cation channel. J Exp Bot 50:873–876

    Google Scholar 

  • Brüggemann LI, Pottosin II, Schönknecht G (1999b) Cytoplasmic magnesium regulates the fast activating vacuolar cation channel. J Exp Bot 50:1547–1552

    Article  Google Scholar 

  • Chen Z, Pottosin II, Cuin TA, Fuglsang AT, Tester M, Jha D, Zepeda-Jazo I, Zhou M, Palmgren MG, Newman IA, Shabala S (2007) Root plasma membrane transporters controlling K+⁄Na+ homeostasis in salt-stressed barley. Plant Physiol 145:1714–1725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cuin TA, Betts SA, Chalamandrier R, Shabala S (2008) A root’s ability to retain K+ correlates with salt tolerance in wheat. J Exp Bot 59:2697–2706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Demidchik V, Maathuis FJM (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175:387–404

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Tester M (2002) Sodium fluxes through nonselective cation channels in the plasma membrane of protoplasts from Arabidopsis roots. Plant Physiol 128:379–387

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Demidchik V, Shabala SN, Coutts KB, Tester MA, Davies JM (2003) Free oxygen radicals regulate plasma membrane Ca2+- and K+-permeable channels in plant root cells. J Cell Sci 116:81–88

    Article  CAS  PubMed  Google Scholar 

  • Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V (2010) Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 123:1468–1479

    Article  CAS  PubMed  Google Scholar 

  • Dobrovinskaya OR, Muñiz J, Pottosin II (1999a) Inhibition of vacuolar ion channels by polyamines. J Membr Biol 167:127–140

    Article  CAS  PubMed  Google Scholar 

  • Dobrovinskaya OR, Muñiz J, Pottosin II (1999b) Asymmetric block of the plant vacuolar Ca2+ permeable channel by organic cations. Eur Biophys J 28:552–563

    Article  CAS  PubMed  Google Scholar 

  • Drouin H, Hermann A (1994) Intracellular action of spermine on neuronal Ca2+ and K+ currents. Eur J Neurosci 6:412–419

    Article  CAS  PubMed  Google Scholar 

  • Felle HH (2005) pH regulation in anoxic plants. Ann Bot 96:519–532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM, Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature (Lond) 422:442–446

    Article  CAS  Google Scholar 

  • García-Mata C, Gay R, Sokolovski S, Hills A, Lamattina L, Blatt MR (2003) Nitric oxide regulates K+ and Cl channels in guard cells through a subset of abscisic acid-evoked signaling pathways. Proc Natl Acad Sci USA 100:11116–11121

    Article  PubMed Central  PubMed  Google Scholar 

  • Garufi A, Visconti S, Camoni L, Aducci P (2007) Polyamines as physiological regulators of 14-3-3 interaction with the plant plasma membrane H+-ATPase. Plant Cell Physiol 48:434–440

    Article  CAS  PubMed  Google Scholar 

  • Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581:2204–2214

    Article  CAS  PubMed  Google Scholar 

  • Hamamoto S, Marui J, Matsuoka K, Higashi K, Igarashi K, Nakagawa T, Kuroda T, Mori Y, Murata Y, Nakanishi Y, Maeshima M, Yabe I, Uozumi N (2008) Characterization of a tobacco TPK-type K+ channel as a novel tonoplast K+ channel using yeast tonoplasts. J Biol Chem 283:1911–1920

    Article  CAS  PubMed  Google Scholar 

  • Hedrich R, Marten I (2011) TPC1-SV channels gain shape. Mol Plant 4:428–441

    Article  CAS  PubMed  Google Scholar 

  • Huang CJ, Moczydlowski E (2001) Cytoplasmic polyamines as permeant blockers and modulators of the voltage-gated sodium channel. Biophys J 80:1262–1279

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hughes G, Khan YM, East M, Lee AG (1995) Effects of polycations on Ca2+ binding to the Ca2+-ATPase. Biochem J 308:493–499

    CAS  PubMed Central  PubMed  Google Scholar 

  • Janicka-Russak M, Kabała K, Młodzińska E, Kłobus G (2010) The role of polyamines in the regulation of the plasma membrane and the tonoplast proton pumps under salt stress. J Plant Physiol 167:261–269

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita T, Nishimura M, Shimazaki K (1995) Cytosolic concentration of Ca2+ regulates the plasma membrane H+-ATPase in guard cells of fava bean. Plant Cell 7:1333–1342

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kurata HT, Zhu EA, Nichols CG (2010) Locale and chemistry of spermine binding in the archetypal inward rectifier Kir2.1. J Gen Physiol 135:495–508

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laohavisit A, Shang Z, Rubio L et al (2012) Arabidopsis annexin1 mediates the radical-activated plasma membrane Ca2+-and K+-permeable conductance in root cells. Plant Cell 24:1522–1533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu K, Fu H, Bei Q, Luan S (2000) Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol 124:1315–1326

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lopatin AN, Makhina EN, Nichols CG (1994) Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature (Lond) 372:366–369

    Article  CAS  Google Scholar 

  • Lu Z, Ding L (1999) Blockade of a retinal cGMP-gated channel by polyamines. J Gen Physiol 113:35–43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marina M, Maiale SJ, Rossi FR, Romero MF, Rivas EI, Gárriz A, Ruiz OA, Pieckenstain FL (2008) Apoplastic polyamine oxidation plays different roles in local responses of tobacco to infection by the necrotrophic fungus Sclerotinia sclerotiorum and the biotrophic bacterium Pseudomonas viridiflava. Plant Physiol 147:2164–2178

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pandolfi C, Pottosin I, Cuin T, Mancuso S, Shabala S (2010) Specificity of polyamine effects on NaCl-induced ion flux kinetics and salt stress amelioration in plants. Plant Cell Physiol 51:422–434

    Article  CAS  PubMed  Google Scholar 

  • Peiter E, Maathuis FJM, Mills LN, Knight H, Pelloux J, Hetherington AM, Sanders D (2005) The vacuolar Ca2+-activated channel TPC1 regulates germination and stomatal movement. Nature (Lond) 434:404–408

    Article  CAS  Google Scholar 

  • Pérez V, Wherrett T, Shabala S, Muñiz J, Dobrovinskaya O, Pottosin I (2008) Homeostatic control of slow vacuolar channels by luminal cations and evaluation of the channel-mediated tonoplast Ca2+ fluxes in situ. J Exp Bot 59:3845–3855

    Article  PubMed Central  PubMed  Google Scholar 

  • Pottosin I, Dobrovinskaya O (2014) Non-selective cation channels in plasma and vacuolar membranes and their contribution to K+ transport. J Plant Physiol 171:732. doi:10.1016/j.jplph.2013.11.013

    Article  CAS  PubMed  Google Scholar 

  • Pottosin II, Muñiz J (2002) Higher plant vacuolar ionic transport in the cellular context. Acta Bot Mex 60:37–77

    Google Scholar 

  • Pottosin II, Schönknecht G (2007) Vacuolar calcium channels. J Exp Bot 58:1559–1569

    Article  CAS  PubMed  Google Scholar 

  • Pottosin II, Dobrovinskaya OR, Muñiz J (2001) Conduction of monovalent and divalent cations in the slow vacuolar channel. J Membr Biol 181:55–65

    CAS  PubMed  Google Scholar 

  • Pottosin II, Martínez-Estévez M, Dobrovinskaya OR, Muñiz J (2003) Potassium-selective channel in the red beet vacuolar membrane. J Exp Bot 54:663–667

    Article  CAS  PubMed  Google Scholar 

  • Pottosin I, Velarde-Buendía AM, Zepeda-Jazo I, Dobrovinskaya O, Shabala S (2012) Synergism between polyamines and ROS in the induction of Ca2+ and K+ fluxes in roots. Plant Signal Behav 7:1084–1087

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pottosin I, Velarde-Buendía AM, Bose J, Zepeda-Jazo I, Shabala S, Dobrovinskaya O (2014) Cross-talk between ROS and polyamines in regulation of ion transport across plasma membrane: implications for plant adaptive responses. J Exp Bot. doi:10.1093/jxb/ert423

    Google Scholar 

  • Reggiani R, Zaina S, Bertani A (1992) Plasmalemma ATPase in rice coleoptiles: stimulation by putrescine and polyamines. Phytochemistry 31:417–419

    Article  CAS  Google Scholar 

  • Reggiani R, Hockoeppler A, Bertani A (1993) Polyamines in rice seedlings under oxygen-deficit stress. Plant Physiol 91:1197–1201

    Article  Google Scholar 

  • Rodríguez AA, Maiale SJ, Menéndez AB, Ruiz OA (2009) Polyamine oxidase activity contributes to sustain maize leaf elongation under saline stress. J Exp Bot 60:4249–4262

    Article  PubMed  Google Scholar 

  • Roy P, Niyogi K, SenGupta DN, Ghosh B (2005) Spermidine treatment to rice seedlings recovers salinity stress-induced damage of plasma membrane and PM-bound H+-ATPase in salt-tolerant and salt-sensitive rice cultivars. Plant Sci 168:583–591

    Article  CAS  Google Scholar 

  • Sarjala T (1996) Growth, potassium and polyamine concentrations of Scots pine seedlings in relation to potassium availability under controlled growth conditions. J Plant Physiol 147:593–598

    Article  CAS  Google Scholar 

  • Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol 141:1653–1665

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shabala S, Cuin TA, Pottosin II (2007) Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking non-selective cation channels. FEBS Lett 581:1993–1999

    Article  CAS  PubMed  Google Scholar 

  • Sharma T, Dreyer I, Riedelsberger J (2013) The role of K+ channels in uptake and redistribution of potassium in the model plant Arabidopsis thaliana. Front Plant Sci 4:224

    PubMed Central  PubMed  Google Scholar 

  • Sokolovski S, Blatt MR (2004) Nitric oxide block of outward-rectifying K+ channels indicates direct control by protein nitrosylation in guard cells. Plant Physiol 136:4275–4284

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sudha G, Ravishankar GA (2003) Influence of putrescine on anthocyanin production in callus cultures of Daucus carota mediated through calcium ATPase. Acta Physiol Plant 25:69–75

    Article  CAS  Google Scholar 

  • Sun C, Liu YL, Zhang WH (2002) Mechanism of the effect of polyamines on the activity of tonoplasts in barley roots under salt stress. Acta Bot Sin 44:1167–1172

    CAS  Google Scholar 

  • Sun J, Chen S, Dai S, Wang R, Li N, Shen X, Zhou X, Lu C, Zheng X, Hu Z, Zhang Z, Song J, Xu Y (2009) NaCl-included alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiol 149:1141–1153

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tang G, Newton R (2005) Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. J Plant Growth Regul 46:31–43

    Article  CAS  Google Scholar 

  • Tikhonova LI, Pottosin II, Dietz KJ, Schönknecht G (1997) Fast-activating cation channel in barley mesophyll vacuoles: inhibition by calcium. Plant J 11:1059–1070

    Article  CAS  Google Scholar 

  • Tisi A, Angelini R, Cona A (2008) Wound healing in plants: cooperation of copper amine oxidase and flavin-containing polyamineoxidase. Plant Signal Behav 3:204–206

    Article  PubMed Central  PubMed  Google Scholar 

  • Tun NN, Santa-Catarina C, Begum T, Silveria V, Handro W, Floh EIS, Scherer GFE (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354

    Article  CAS  PubMed  Google Scholar 

  • Uehara A, Fill M, Velez P, Yasukochi M, Imanaga I (1996) Rectification of rabbit cardiac ryanodine receptor current by endogenous polyamines. Biophys J 71:769–777

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Velarde-Buendía AM (2013) Remodelación del transporte membranal por especies reactivas de oxígeno y poliaminas en tejido radicular. Dissertation, Universidad de Colima, Mexico

    Google Scholar 

  • Velarde-Buendía AM, Shabala S, Cvikrova M, Dobrovinskaya O, Pottosin I (2012) Salt-sensitive and salt-tolerant barley varieties differ in the extent of potentiation of the ROS-induced K+ efflux by polyamines. Plant Physiol Biochem 61:18–23

    Article  PubMed  Google Scholar 

  • Walker DJ, Leigh RA, Miller AJ (1996) Potassium homeostasis in vacuolated plant cells. Proc Natl Acad Sci USA 93:10510–10514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang F, Deng S, Ding M, Sun J, Wang M, Zhu H et al (2013) Overexpression of a poplar two-pore K+ channel enhances salinity tolerance in tobacco cells. Plant Cell Tissue Organ Cult 112:19–31

    Article  CAS  Google Scholar 

  • Watson MB, Malmberg RL (1996) Regulation of Arabidopsis thaliana (L.) Heynh arginine decarboxylase by potassium deficiency stress. Plant Physiol 111:1077–1083

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weiger TM, Langer T, Hermann A (1998) External action of di- and polyamines on maxi calcium-activated potassium channels: an electrophysiological and molecular modeling study. Biophys J 74:722–730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Williams K (1997) Interactions of polyamines with ion channels. Biochem J 385:289–297

    Google Scholar 

  • Wimalasekera R, Tebart F, Scherer GFE (2011) Polyamines, polyamine oxidases and nitric oxide in development, abiotic and biotic stresses. Plant Sci 181:593–603

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Shang Z, Jiang X, Moschou PN, Sun W, Roubelakis-Angelakis KA, Zhang S (2010) Spermidine oxidase-derived H2O2 regulates pollen plasma membrane hyperpolarization-activated Ca2+-permeable channels and pollen tube growth. Plant J 63:1042–1053

    Article  CAS  PubMed  Google Scholar 

  • Xie LH, John SA, Ribalet B, Weiss JN (2005) Long polyamines act as cofactors in PIP2 activation of inward rectifier potassium (Kir2.1) channels. J Gen Physiol 126:541–549

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoda H, Hiroi Y, Sano H (2006) Polyamine oxidase is one of the key elements for oxidative burst to induce programmed cell death in tobacco cultured cells. Plant Physiol 142:193–206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zandonadi DB, Santos MP, Dobbss LB, Olivares FL, Canellas LP, Binzel ML, Okorokova-Façanha AL, Façanha AR (2010) Nitric oxide mediates humic acids-induced root development and plasma membrane H+-ATPase activation. Planta (Berl) 231:1025–1036

    Article  CAS  Google Scholar 

  • Zepeda-Jazo I, Shabala S, Chen Z, Pottosin II (2008) Na+-K+ transport in roots under salt stress. Plant Signal Behav 3:401–403

    Article  PubMed Central  PubMed  Google Scholar 

  • Zepeda-Jazo I, Velarde-Buendía AM, Enríquez-Figueroa R, Bose J, Shabala S, Muñiz-Murguía J, Pottosin II (2011) Polyamines interact with hydroxyl radicals in activating Ca2+ and K+ transport across the root epidermal plasma membranes. Plant Physiol 157:2167–2180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao F, Song CP, He J, Zhu H (2007) Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities. Plant Physiol 145:1061–1072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Support from CONACyT (Mexico) and University of Tasmania is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Pottosin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Pottosin, I. (2015). Polyamine Action on Plant Ion Channels and Pumps. In: Kusano, T., Suzuki, H. (eds) Polyamines. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55212-3_19

Download citation

Publish with us

Policies and ethics